| 研究生: |
蔡宗原 chai, Tzung-Yuan |
|---|---|
| 論文名稱: |
應用線性與對數線性放射率模組於多光譜輻射測溫法預測鋁合金表面溫度之研究 A Study on Multispectral Radiation Thermometry (MRT) Using Linear and Log-Linear Emissivity Models for Aluminum Alloys |
| 指導教授: |
溫昌達
Wen, Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 對數線性放射率模組(LLE) 、鋁合金 、多光譜輻射測溫法(MRT) 、放射率 、線性放射率模組(LEM) |
| 外文關鍵詞: | Log-linear emissivity model (LLE), linear emissivity model(LEM), multispectral radiation thermometry (MRT), emissivity |
| 相關次數: | 點閱:106 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對AL-1100、AL-2024、AL-5083、AL-6061與AL-7005的鋁合金,在600K、700K與800K時,其放射率的實驗分析與利用多光譜輻射測溫法去推測溫度結果之探討,在多光譜輻射測溫法中,使用線性放射率模組(LEM)與對數線性放射率模組(LLE),目的是為了找出各種不同情況下都適用的放射率模組。
放射率之特性可歸納為下列幾項:(1)放射率在2~4.8μm的波長範圍內,放射率是呈現波長增加而下降的趨勢;(2)放射率隨著加熱溫度上升而增加,在700K加熱至800K時,因為MgO造成金屬表面的褪色使得放射率的增加更明顯;(3)在相同溫度下不同鋁合金的放射率都有相似的分布,但在放射率數值的大小卻不相同,放射率隨溫度變化的大小取決於合金內部鎂元素成份的多寡與其氧化的程度;(4)在加熱時間兩小時後,由於氧化層成長的趨緩造成放射率的變化趨於穩定。
在多光譜輻射測溫法應用分析上可歸納成以下幾項:(1)放射率模組總體的表現上,增加波長個數並無明顯降低溫度誤差;(2)整體預測溫度的結果,以LLE表現優於 LEM;(3)多光譜輻射測溫法在預測溫度結果上,絕大部分都優於單光譜輻射測溫法;(4)提高放射率模組之階數,並無法降低溫度誤差之趨勢,在1 階、2階 LLE與1 階 LEM有較佳的推測結果;(5)在最小平法曲線性迴歸上,推論的輻射強度結果若能越貼近原始之料點的分布情形時,將有更準確的推論結果,進一步從推論出的放射率來觀察,只要推論的放射率分布行為越接近真實情況,則推測溫度也越精確。
筆者以三種推測結果較佳的放射率模組(1 階、2 階 LLE與1 階 LEM)再針對溫度、放射率數值與加熱時間等變數做比較得到以下之結論:(1)推測溫度誤差隨放射率增加而下降;(2)推測溫度誤差是隨溫度上升而下降;(3)在增長加熱時間對於預測溫度誤差之結果,並沒有改善的現象。
This study includes experimental investigation of surface emissivity and analysis of inferred temperature by multispectral radiation thermometry (MRT) for AL-1100, AL-2024, AL-5083, AL-6061, and AL-7005 at 600K, 700K, and 800K. Log-linear emissivity model (LLE) and linear emissivity model(LEM) are used to examine the MRT on aluminum surface temperature prediction. The goal of this study is to find the best MRT emissivity model which can compensate the aluminum emissivity variations and accurately infer the surface temperature.
For aluminum emissivity behaviors, (1) emissivity decreases with increasing wavelength from 2μm to 4.8μm;(2) emissivity increases with increasing temperature. Apparent increase in emissivity from 700K to 800K is contributed to the surface discoloration caused by MgO;(3) different alloys generally produce emissivity distributions that are similar in shape but not in magnitude at the same temperature. Variations in the concentration of alloying element magnesium cause different degrees of oxidation and lead to pronounced emissivity change in magnitude;(4) emissivity reaches steady state after the second hour heating due to the surface oxidation becoming fully developed.
For the examination of MRT emissivity models on aluminum, (1) increasing the number of wavelength does not improve accuracy;(2) overall, LLE show better performance than LEM;(3) multispectral radiation thermometry (MRT) is better than spectral radiation thermometry (SRT);(4) increasing order does not enhance temperature prediction. The 1st order and 2nd order LLE, and 1st order LEM show better performance;(5) for least-squares technique, the closer the generated intensity and measured one, the more accurate inferred temperature; the better emissivity model to suitably represent the real surface emissivity behaviors, the more accurate inferred temperature by MRT.
The effects of temperature, emissivity value, and heating time are further analyzed by the three aforementioned best MRT emissivity models, 1st order LLE, 2nd order LLE, and 1st order LEM. Results show that (1) inferred temperature error decreases with increasing emissivity value;(2) inferred temperature error decreases with increasing temperature;(3) increasing heating time does not improve measurement accuracy.
1.
Adam Mazikowskia, Krzysztof Chrzanowski, “Non-contact multiband method for emissivity measurement,” Infrared Physics and Technology, vol 44, pp.91-99, 2002.
2.
Akihiko Otsuka, Kazuo Hosonoa, Ryohei Tanaka, Kuniyuki Kitagawa, “A survey of hemispherical total emissivity of the refractory metal in practical use,” energy, vol. 30, pp535-543, 2005.
3.
Blau, H.H. Jr.,Marich, J.B., Martin, W.S., Jaspers, J.R., and Chafee,E., Infrared Spectral Emittance Properties of Solid, afcrl -tl-60-416, 1-78, 1960.
4.
B. Muller and U. Renz, “Development of a fast fiber-optic two-color pyrometer for the temperature mesurement of surfaces with varying emissivities”, American Institute of Physics, review of scientific instruments, vol.72,number 8, pp.3366/9, 2001.
5.
D.Giuliett and M Lucchesi, “Emissivity and absorptivity measurements on some high-purity metals at low temperature,” The Institute of Physics 0022-3727/81/050877+5, 1981.
6.
Doloresco, B. K., “Review of Multispectral Radiation Thermometry and Development of constrained minimization method,” M. S. Thesis , Purdue University, school of Mechanical Engineering, West Lafayette, Dec 1986.
7.
DeWitt, D. P., “Introduction to Radiation Thermometry,” Proceedings of the Aluminum Association Workshop on Sensors, pp.19-39, Atlanta, May 1986.
8.
Dail, G. J., Fuhrman, M. G. and DeWitt, D. P., “Evaluation and Extension of the Spectral-Ratio Radiation Thermometry Method,” Proceedings 4th Int.Aluminum Extrusion Technology Seminar, Chicago, IL, vol. 2, pp. 209-213, 1988.
9.
Daniel Ng and Gustave Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Review of scientific instruments, vol. 72, number 2, 2001.
10.
F. Ansart, H. Ganda, R. Saporte, J. P. Traverse, “Study of the oxidation of aluminium nitride coating at high temperature, ’’ Thin solid films, vol 260, pp.38-46, 1995.
11.
J. L. Gardner, Jones, T. P. and Davies, M. R., “A six-Wavelength radiation pyrometer,” high temperature-high pressures, vol. 13, pp. 459-466, 1981.
12.
Hopkins, M.F., “Four Color Pyrometry for Metal Emissivity Characterization, ” SPIE, Vol.2599, pp294-301, 1996.
13.
Hallo, O Riou, C Stenz and V T Tikhonchuk, “Infrared emissivity studies of melting thresholds and structural changes of aluminum and copper sample heated by femtosecond laser pulses,” journal of physics D:applied physics, vol.39. pp.5272-5279, 2002.
14.
Hitoshi Sai, Hiroo Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Applied physics letters, volume 85, number 16,pp.3399-3402, 2004.
15.
Hiroshi Kawamura, Hiroyuki Fukuyama, Masahito Watanabe and Taketoshi Hibiya,“Normal spectral emissivity of under cooled liquid silicon,” Measurement Science and Technology, vol 5,number 20, pp.386-393, 2005.
16.
Hitoshi Sai, Yoshiaki Kanamori and Hiroo Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructutes,” insttute of publishing, journal of micromechanics and microengineering, vol. 15, S243-S249, 2005.
17.
Iuchi, T., Ohno, J. and Kusaka, R., “Temperature Measurement System of Steel Strips in a Continuous Annealing Furnace,” Transactions of the Iron and Steel Institute of Japan, Vol. 16, pp.195-203, 1976.
18.
Incropera F. P. and DeWitt, D. P., “Fundamentals of Heat and Mass Transfer,” 5th ed, John Wiley and Sons, New York, pp.700-756, 2002.
19.
Ji, J., Gore, J. P., Sivathanu, Y. R. and Lim, J., “Fast Infrared Array Spectrometer used for Radiation Measurements of Lean Premixed Flames,” Proceedings of nhtc00, 34th national heat transfer conference, pittsburgh, pa, pp.1-6, 2000.
20.
J. R. Creighton, W. G. Breiland, D. D. Koleske, G. Thaler,M.H. Crawford, “Emissivity-correcting mid-infrared pyrometry for group-lll nitride MOCVD temperature measurement and control”, elsevier science b.v. all reserved. journal of crystal growth 310, pp.1062-1068, 2008.
21.
Khan, M. A., Allemand C. and Eagar, T. W., “Noncontact Temperature measurement. i. interpolation based techniques,” temperature measurement, vol. 62, pp.392-402, 1991.
22.
L Hallo, O Riou, C Stenz and V T Tikhonchuk, “Infrared emissivity studies of melting thresholds and structural changes of aluminum and copper sample heated by femtosecond laser pulses,” journal of physics d:applied physics,vol. 39.pp.5272-5279, 2002.
23.
Leire del Campo, Raul Perez-saez., Xabier. Esquisabel and Ignacio Fernandez, Manuel. J.Tello,“New experimental device for infrared spectral directional emissivity measurements in controlled environment,’’ American institute of Physics,vol. 77,pp.113111-8, 2006.
24.
Leire del Campo, Raul B. Perez-Saez, Manuel J.Tello, “Iron oxidation kinetics study by using infrared spectral emissivity measurements below 570 ℃,” elsevier ltd. all rights reserved. corrosion science 50, 194-199, 2008.
25.
M. J. Haugh, “Radiation Thermometry in the Aluminum Industry,” Theory and Practice of Radiation Thermometry, D. P. DeWitt and G. D. Nutter, ed., John Wiley and Sons, New York, pp. 905-971, 1988.
26.
Mazikowski, A. and Chrzanowski, K., “Non-contact multiband method for emissivity measurement,” infrared physics & technology, vol. 44, pp. 91-99, 2003.
27.
Michael F. Modest., “Radiative hea transfer ,”acadmic press, usa, pp.31-35; PP.71-79, 2003.
28.
P. N. Bossart, university of Pittsburgh, “Spectral Emissivities, Resistivity, and Thermal Expansion of Tungsten-Molybdenum Alloys,” physics, vol 7, pp50-54, 1935.
29
Pellerin, M. A., “Multispectral Radiation Thermometry: Emissivity Compensation Algorithm,” M.S. thesis, purdue university, school of mechanical engineering, 1990.
30.
Priyavardhan K.Sinha, “Study of the oxidation of aluminum-magnesiim alloys using ultramicrotomy for tem specimen preparation,” M.S. Thesis, Purdue University, school of Mechanical Engineering, 1990.
31.
Pellerin, M.A., “Multispectral Radiation Thermometry for Industrial Application,” PhD thesis, purdue university, school of Mechanical Engineering, December, 1999.
32.
Ph. Bertrand, I. Smurov, D. Grevey, “Application of near infrared pyrometry for continuous Nd:YAG laser welding of stainless steel,” applied surface science, vol 168, pp.182-185, 2000.
33.
Pellerin, M. A., “Multispectral Radiation Thermometry for Industrial Application,” PhD Thesis, Purdue University, school of Mechanical Engineering, Dec, 1999.
34.
Reynolds, P.M., Brit. J. appl. physics, vol. 12, pp.111-114, 1961.
35.
Research projects division, G.C. Marshall space flight center, huntsville, al, nasa-tn-d-1523, nasa-n63-14272, pp.1-253, 1963.
36.
Rozenbaum., D. De sousa Meneses, Y. Auger, S. chermanne, and P.Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” American Institute of physics, vol 70, number 10, pp.4020-4026, 1975.
37.
Raymond M. Sova, Milton J. Linevsky, Michael E. Thomas, Frank F. Mark, “High-temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel”, infrared physics & technology, vol 39, pp.251-261, 1998.
38.
Touloukian, Y.S.and DeWitt, D.P.,ed., “Thermophysical Properties of Matter,” vol. 7; Thermal radiative properties, metallic elements and alloys (Plenum Publishing Corp.,New York 1970.)
39.
Th. Duvaut, D. Georgeault, J.L. Beaudoin , “Multiwavelength infrared pyrometry: optimization and computer simulations,” Elsevier science B.V. all reserved,Infrared Physics and Technology , vol. 36, pp.1089-1103, 1995.
40.
Th. Duvaut, “Comparison between multiwavelength infrared and visible pyrometry: Application to metals,” elsevier science b.v. all reserved. Infrared Physics and Technology ,vol51 ,292-299, 2008.
41.
Wen, C., and Mudawar, I., “Experimental investigation of emissivity of aluminum alloys and temperature determination using multispectral radiation thermometry (MRT) algorithms,” journal of materials engineering and Performance, Vol. 11, pp.551-562, 2002.
42
Wen, C., and Mudawar, I., “Emissivity Characteristics of Roughened Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) emissivitymodels,” International Communications in Heat and Mass Transfer, Vol. 47, pp. 3591-3605, 2005.
43.
Wen, C., and Mudawar, I., “Emissivity Characteristics of Polished Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) emissivity models,” international communications in heat and mass transfer, Vol. 48, pp. 1316-1329, 2005.
44.
Wen, C., “Emissivity characteristics of aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models,” PhD Thesis, purdue university, school of mechanical engineering, August 2005.
45.
Wen, C., and Mudawar, I., “modeling the effects of urface Roughness on the Emissivity of Aluminum Alloys,” International Communications in Heat and Mass Transfer, Vol.49, pp. 4279-4289, 2006.
46.
Wen, C., and Mudawar, I., “Mathematical determination of emissivity and surface temperature of aluminum alloys using multispectral radiation thermometry,” international communications in heat and mass transfer, vol. 33, pp.1063-1070, 2006.
47.
Yi Fenga,b,, Haiwu Zhenga, Zhengang Zhub, Fangqiou Zua,b, “The microstructure and electrical conductivity of aluminum alloy foam,” Elsevier science B.V. all reserved. Materials Chemistry and Physics 78, pp.196-201, 2002.
48.
池逸華, “鋼材放射率行為之實驗研究與線性及對數線性放射率模組在多光譜輻射 測溫法之應用,”碩士論文,國立成功大學機械系, 2007.
49.
呂建財, “鋼材放射特徵研究與多光譜輻射測溫法之應用,” 碩士論文,國立成功大學機械系, 2007.