簡易檢索 / 詳目顯示

研究生: 林聖斌
Lin, Sheng-Pin
論文名稱: 具能谷邊緣態的石墨烯狀拓樸聲子晶體研究
Graphene-like Topological Phononic Crystals with Valley Edge Modes
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 66
中文關鍵詞: 聲子晶體彈性波拓樸絕緣體石墨烯狀結構量子能谷霍爾效應邊緣模態
外文關鍵詞: phononic crystals, topological insulators, elastic wave, graphene-like, quantum valley Hall effect, edge modes
相關次數: 點閱:139下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拓樸絕緣體在近 20 年間受到相當大的矚目,凝聚態物理學由於拓樸學的導入,更開啟了科學史上嶄新且令人振奮的一頁。拓樸絕緣體主在研究電子、電磁波在固體材料中因「量子自旋霍爾效應」產生的拓樸相變,致使本來無法激發導態的絕緣體,在其邊界處產生受拓樸保護且高效率傳播的邊緣模態。
    本文利用具有拓樸能帶結構的二維聲子晶體,來實現彈性體中的量子能谷霍爾效應,來達到固體材料中使彈性波在特定邊界傳遞的目的。首先建立聲子晶體的模型,並利用有限元素法計算其能帶結構。透過改變幾何尺寸來調整能帶結構,使色散曲線中的迪拉克錐有可以有不受其他能干擾、較好的控制環境。另外改變模型中的空間對稱性,會出現模態反轉與贋自旋的現象,也會得到因贋自旋方向不同而拓樸不等價的兩種聲子晶體。利用這兩種拓樸不等價的聲子晶體製造介面,並以超晶胞法分析其能帶結構,會在邊體關係圖中找出具有清晰邊緣能帶的頻段。為驗證邊緣模態的現象,利用全波模擬模型觀察單一頻率打入結構中,驗證邊緣模態具有高集中、低散射的波傳行為。
    本研究得出,拓樸不等價的聲子晶體相連接時,其介面處皆會出現受拓樸保護的邊緣模態。而該邊緣模態具有抑制後向散射、高集中性與高效率穿透行為,具有應用於設計彈性波波導與集能器等裝置的潛力。

    A two-dimensional hexagonal phononic crystal is proposed to exhibit the topologically protected elastic edge wave, which only occurs at the interface between two topologically inequivalent phononic crystals. The lattice is designed to imitate the atomic arrangement inside the graphene, in order to form the clear Dirac cones in the band structure. Then, we break the inversion symmetry of C6v into C3v by adjusting the radii’ scaling ratio α in the lattice. In the process of reducing symmetry, the degenerate Dirac cone at K-point splits thus a band gap opens. The sign of α determines modes of pseudo-spin up or down at Kpoints.
    The additional bands appear in the band gap at the interface between two phononic crystals with different pseudo-spin modes. A full-wave simulation is conducted to observe these pass-band modes. These interface modes are proved to be the topologically protected edge waves, which are confined and can only propagate along the interface. The transmission spectrum shows great transmissivity of the excited edge mode, even as the wave encounter sharp corners. Because the topological-insulated phononic crystal has robust wave transmission property, we can use it to design highly-efficient acoustic devices such as wave splitters and energy harvesting devices.

    摘要 I 英文摘要 II 致謝 X 目錄 XI 圖目錄 XIV 符號說明 XVI 第一章 緒論 1 1-1 前言 1 1-1-1 聲子晶體 1 1-1-2 拓樸絕緣體 1 1-2 文獻回顧 2 1-2-1 聲子晶體 2 1-2-2 拓樸學與量子霍爾效應 2 1-2-3 量子能谷霍爾效應 3 1-2-4 拓樸聲子晶體 4 1-3 本文架構 5 第二章 理論與數值方法 6 2-1 前言 6 2-2 固態物理學的晶體理論 6 2-2-1 基本定義 7 2-2-2 實晶格與倒晶格 7 2-2-3 布洛赫定理與布里淵區 8 2-3 拓樸學 9 2-3-1 能帶理論與拓樸 9 2-3-2 貝里相位與陳數 10 2-4 石墨烯 11 2-4-1 A-B 次晶格 12 2-5 量子霍爾效應簡介 12 2-5-1 整數量子霍爾效應 13 2-5-2 量子自旋霍爾效應 13 2-5-3 量子能谷霍爾效應 14 2-6 量子霍爾效應簡介 14 2-6-1 平面應力及平面應變問題 15 2-6-2 結構模組之有限元素法 17 第三章 石墨烯狀結構與能帶分析 27 3-1 前言 27 3-2 幾何模型建立與能帶分析 27 3-2-1 石墨烯狀A-B 次晶格結構 27 3-2-2 石墨烯狀模型能帶分析 28 3-2-3 對稱性破壞A-B 次晶格結構 29 3-3 邊體關係圖 30 3-3-1 介面型態 30 3-3-2 邊體關係圖分析 31 3-4 全波模擬分析 31 第四章 介面型態與雙材料質量排列模型討論 49 4-1 前言 49 4-2 介面類型探討 49 4-2-1 二排鋸齒介面 50 4-2-2 扶手椅形介面 50 4-3 雙材料質量之模型 50 4-3-1 色散曲線分析與拓樸介面超晶胞分析 50 4-3-2 雙材料質量模型拓樸介面之全波模擬 51 第五章 綜合討論與未來展望 60 5-1 綜合討論 60 5-2 未來展望 61 文獻回顧 62

    [1] E. Yablonovitch and T. J. Gmitter, "Photonic Band Structure: The Face-centered-Cubic Case" Physical Review Letter, Vol. 63, pp. 1950-1953 (1989)
    [2] Asbóth, János K., László Oroszlány, and András Pályi. “A Short Course on Topological Insulators.” Lecture Notes in Physics. Vol. 919, Springer International Publishing, (2016).
    [3] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-state Physics and Electronics” Physical Review Letter, Vol. 58, pp. 2059-2062 (1987)
    [4] S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices” Physical Review Letter, Vol. 58, pp. 2486-2489 (1987)
    [5] L. Brillouin, Wave propagation in periodic structures, 2nd ed. Dover, New York (1953)
    [6] M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani, “Acoustic band gap structure of periodic elastic composites” Physical Review Letter, Vol. 71, p. 2022 (1993)
    [7] K. von Klitzing, G. Dorda and M. Pepper, “New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance” Physical Review Letters, Vol. 45, pp. 494-497 (1980)
    [8] K. von Klitzing, “The Quantized Hall Effect” Reviews of Modern Physics, Vol. 58, pp. 519-531 (1986)
    [9] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential” Physical Review Letters, Vol. 49, pp. 405-408 (1982)
    [10] T. Fukui, Y. Hatsugai, and H. Suzuki, “Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances”, Journal of the Physical Society of Japan, Vol. 74 pp. 1674-1677 (2005)
    [11] Q. Niu, D. J. Thouless, and Y.-S. Wu, “Quantized Hall conductance as a topological invariant”, Physical Review B, Vol. 31, pp. 3372-3377 (1985)
    [12] C. L. Kane, “Topological Band Theory and the ℤ2 Invariant” Contemporary Concepts of Condensed Matter Science, Vol. 6, pp. 3-34 (2013)
    [13] M. V. Berry, “Quantal Phase Factors Accompanying Adiabatic Changes” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 392 pp. 45-57 (1984)
    [14] Y. Hatsugai, “Chern Number and Edge States in the Integer Quantum Hall Effect” Physical Review Letters, Vol. 71, pp. 3697-3700 (1993)
    [15] F. D. Haldane, “Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ‘parity anomaly’ “ Physical Review Letter, Vol. 61, pp. 2015-2018 (1988)
    [16] C. L. Kane, and E. J. Mele, “Quantum Spin Hall Effect in Graphene” Physical Review Letter, Vol. 65, p. 226801 (2005)
    [17] J. E. Hirsch, “Spin Hall Effect” Physical Review Letters, Vol 83, p. 1834 (1999)
    [18] S. Murakami, N. Nagaosa, and S. C. Zhang, “Dissipationless Quantum Spin Current at Room Temperature” arXiv:cond-mat/0308167v1 (2003)
    [19] B. A. Bernevig, and S. C. Zhang, “Quantum spin Hall effect” Physical Review Letter, Vol. 96, p. 106802 (2006)
    [20] B. A. Bernevig, T. L. Hughes, S. C. Zhang, “Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells” Science, Vol. 314, pp. 1757-1761 (2006)
    [21] W. Feng, C. C. Liu, G. B. Liu, J. J. Zhou, Y. Yao, “First-principles investigations on the Berry phase effect in spin–orbit coupling materials” Computational Materials Science, Vol. 112, pp. 428-447 (2016)
    [22] O.A. Pankratov, S.V. Pakhomov, B.A. Volkov, “Supersymmetry in Heterojunctions: Band-inverting Contact on the Basis of Pb-SnTe and Hg-CdTe” Solid State Communications, Vol. 61 pp.93-97 (1987)
    [23] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp,…,S. C. Zhang, “Quantum Spin Hall Insulator State in HgTe Quantum Wells” Science, Vol. 318, pp. 766-770 (2007)
    [24] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva,…, Firsov, A. A. “ Two-dimensional Gas of Massless Dirac Fermions in Graphene” (2005) Nature, Vol. 438, pp. 197-200 (2005)
    [25] Rycerz, A., J. Tworzydlo, and C. W. J. Beenakker. “Valley Filter and Valley Valve in Graphene.” Nature Physics, Vol. 3, pp. 172-175 (2007)
    [26] Xiao, D., W. Yao, and Q. Niu. “Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport.” Physical Review Letter, Vol. 99, p.236809 (2007)
    [27] X. P. Zhang, Coexistence of Valley and Spin Hall Effects in Graphene Decorated with Adatoms, National Tsing Hua University, Taiwan pp. 5-6 (2016)
    [28] R. Skomski, P. A. Dowben, M. Sky Driver, J. A. Kelber, “Sublattice-induced Symmetry Breaking and Band-gap Formation in Graphene” Materials Horizons, Vol. 1, pp. 563-571 (2014)
    [29] Dong, J. W., X. D. Chen, H. Zhu, Y. Wang, and X. Zhang. “Valley Photonic Crystals for Control of Spin and Topology” Nature Materials, Vol. 16, pp. 298-302. (2017)
    [30] T. Ma, and G. Shvets, “All-Si Valley-Hall Photonic Topological Insulator“ New Journal of Physics, Vol. 18, pp. 025012 (2016)
    [31] M. Tahir, A. Manchon, K. Sabeeh, and U. Schwingenschlögl, “Quantum Spin/Valley Hall Effect and Topological Insulator Phase Transitions in Silicene” Applied Physics Letters, Vol. 102 pp. 162412 (2013)
    [32] M. Tahir, and U. Schwingenschlögl, “Valley Polarized Quantum Hall Effect and Topological Insulator Phase Transitions in Silicene” Scientific Reports, Vol. 3, pp. 1075-1079 (2013)
    [33] F. Zhang, A. H. MacDonald, and E. J. Mele, “Valley Chern Numbers and Boundary Modes in Gapped Bilayerd Graphene” Proceedings of the National Academy of Sciemces of the United States of America, Vol. 110, pp. 10546-10551 (2013)
    [34] J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke,…, and Z. Liu, “Observation of topological valley transport of sound in sonic crystals” Nature Physics, Vol. 13, pp.369-374 (2016)
    [35] B. Z. Xia, T. T. Liu, G. L. Huang, H. Q. Dai, J. R. Jiao, X. G. Zang,…,and J. Liu, “Topological Phononic Insulator with Robust Pseudospin-dependent Transport” Physical Reiview B, Vol. 96, p. 094106 (2017)
    [36] Ben Simons, Phase Transitions and Collective Phenomena, University of Cambridge, Cambridge, pp.83-89(1997)
    [37] Z. Zhang, Q. Wei, Y. Cheng, T. Zhang, D. Wu, and X. Liu, “Topological Creation of Acoustic Pseudospin Multipoles in a Flow-Free Symmetry-Broken Metamaterial Lattice” Physical Review Letters, Vol. 118, pp. 084303 (2017)
    [38] H. Dai, T. Liu, J. Jiao, B. Xia, and D. Yu, “Double Dirac Cone in Two-dimensional Phononic Crystals Beyond Circular Cells” Journal of Applied Physics, Vol. 121, pp. 135105 (2017)
    [39] A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alu, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice” Nature Communications, Vol. 6, p. 8260 (2015)
    [40] Y. Yang, Z. Yang, B. Zhang, “Acoustic Valley Edge States in a Graphene-like Resonator System” Journal of Applied Physics, Vol. 123, p. 091713 (2018)
    [41] D. Torrent, D. Mayou, and J. Sánchez-Dehesa, “Elastic Analog of Graphene: Dirac Cones and Edge States for Flexural Waves in Thin Plates” Physical Review B, Vol. 87 p. 115143 (2013)
    [42] Raj Kumar Pal and Massimo Ruzzene, “Edge Waves in Plates with Resonators: An Elastic Analogue of the Quantum Valley Hall Effect” New Journal of Physics, Vol. 19, p. 025001 (2017)
    [43] Toshikaze Kariyado & Yasuhiro Hatsugai, “Manipulation of Dirac Cones in Mechanical Graphene” Scientific Reports, Vol. 5, p. 18107 (2015)
    [44] Yao-Ting Wang, Shuang Zhang, “Elastic Spin Hall effect in Mechanical Graphene” New Journal of Physics, Vol. 18, p. 113014 (2016)
    [45] J. Vila, Raj Kumar Pal, Massimo Ruzzene, “Observation of Topological Valley Modes in an Elastic Hexagonal Lattice” Physical Reviews B, Vol. 96, p. 134307 (2017)
    [46] Edward McCann, and Vladimir I. Fal’ko, “Landau-Level Degeneracy and Quatum Hall Effect in a Graphene Bilayer” Physical Review Letters, Vol. 96, p. 086805 (2006)
    [47] J. N. Reddy, An introduction to the finite element method, 3rd edition, McGraw-Hill, New York (2006)
    [48] L. Esaki, and R.Tsu, “Superlattice and Negative Differential Conductivity in Semiconductors” IBM Journal of Research and Development, Vol. 14, pp. 61-65 (1970)

    無法下載圖示 校內:2020-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE