簡易檢索 / 詳目顯示

研究生: 許戊紅
Hsu, Wu-Hung
論文名稱: 開發以低軌道衛星作為全球定位系統定位輔助之研究
Development of the Low Earth Orbit Satellite Signal Aided GPS Positioning
指導教授: 詹劭勳
Jan, Shau-Shiun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 47
中文關鍵詞: 全球定位系統低軌道衛星銥衛星三角定位都普勒定位都普勒頻移
外文關鍵詞: GPS, LEO, IRIDIUM, Trilateration, Doppler positioning, Doppler shift
相關次數: 點閱:145下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • GPS系統採用展頻技術有效地降低所需發射功率,但相對的微弱訊號極易在複雜環境下被屏蔽,以至在如都市、深山或室內環境之中,GPS往往無法提供連續的完整的定位服務。針對這個弱處,本篇論文援引具有強訊號、高動態的低軌道衛星作輔助定位。

    進一步地,高動態直接造成接收訊號的都普勒頻移遠遠超出傳統接收機所保證能夠即時處理的範圍;另一方面,通常為商業系統的低軌道的擷取資訊也不易取得。回顧第一代全球導航系統TRANSIT,本篇論文嘗試以都普勒頻移取代偽距成為觀測量,以都普勒效應作為輔助方程來協作定位。本篇論文的目的在於開發利用低軌道衛星都普勒頻移作為GPS輔助的定位系統並研究其可行性。此系統結合GPS方面偽距資訊與低軌道衛星都普勒頻移資訊共同作定位解算,其包含兩個核心部分:對低軌道衛星的訊號處理,以及合併三角定位法與都普勒定位法作為創新的定位演算。

    在此篇論文中,低軌道衛星波音公司的銥衛星通訊系統(IRIDIUM Network)為目標輔助系統,其物理架構與訊號結構、實地觀測以及針對都普勒頻移擷取的訊號處理皆有完整詳細的介紹與分析呈現。在合併定位演算法方面,首先介紹兩組原生演算法──三角定位及都普勒定位法;接著導出合併定位演算法並討論其所面臨的困境。在實現此輔助定位系統的驗證中,基於都市環境的假設作實驗設計並與傳統三角定位法作比較分析,得到不亞於原定位法的結果,證實以低軌道衛星合併都普勒定位法作GPS的輔助定位的可行性。

    GPS adopts spreading spectrum technology, which effectively reduces the power consumption at the transmission, but the corresponding weak power signal can be blocked easily in challenging environments. In a city, near mountains or indoors, GPS cannot promise continuous positioning services at all. From this perspective, an LEO satellite communication system with stronger signal power and higher dynamics is introduced to aid the GPS positioning.

    The wider Doppler shift range due to the high dynamics of LEO satellites causes enough trouble for the conventional GPS receiver that normal processing cannot guarantee on-time solutions for the positioning computation. On the other hand, acquisition information is not easy to obtain either. Inspired by TRANSIT, the first generation of satellite navigation system, in this thesis, the Doppler shift substitutes the pseudorange as the measurement, and the Doppler effect is applied for aiding in positioning. The main goal of this research is to develop an aiding positioning system using the Doppler shift of an LEO signal and to study its feasibility. The aiding positioning system, which combines the pseudorange information of the GPS system and the Doppler shift information of the LEO system for simultaneous calculation, includes two cores: the LEO signal processing and a combined positioning algorithm using the trilateration and Doppler positioning.

    In the thesis, the IRIDIUM network, the satellite communication system of the Boeing Company, is the target LEO aiding positioning system. Its physical architecture, signal structure, local observation, worldwide availability analysis and signal processing are detailed in the content. In the algorithm, two original algorithms, the trilateration and the Doppler positioning, are firstly introduced, then the derivation of the combined positioning algorithm follows. In the confirmation and the demonstration of the developed aiding positioning system, the experiments are designed as in a city environment, and the results are compared to the conventional Trilateration-only positioning. The analysis shows the LEO aiding positioning system performance to be no worse than ordinary GPS positioning.

    TABLE OF CONTENT I LIST OF TABLES III LIST OF FIGURES IV Chapter 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Objectives 2 1.3 Previous Work 4 1.4 Thesis Organization 5 Chapter 2 LEO SYSTEM: IRIDIUM 7 2.1 Orbit Prediction with TLE 8 2.1.1 GPS Orbit Prediction with TLE 8 2.1.2 IRIDIUM Orbit Prediction with TLE 11 2.2 IRIDIUM Observation 11 2.3 IRIDIUM Signal 15 2.3.1 IRIDIUM Signal Structure 15 2.3.2 Doppler Shift Acquisition 18 2.3.3 Signal Characteristics 19 2.4 Interim Summary 21 Chapter 3 LEO AIDING ALGORITHM 22 3.1 Trilateration Positioning Algorithm 22 3.2 Doppler Positioning 24 3.3 Combined Algorithm for the Static Positioning 26 3.3.1 The Mismatched Terms 27 3.3.2 Approach 1: Coupling Clock-Bias-Rate with Clock-Bias 28 3.3.3 Approach 2: Black Box 30 3.4 Interim Summary 32 Chapter 4 AIDING POSITIONING SYSTEM USING LEO DOPPLER SHIFTS 34 4.1 Concept and Design of the Experiment 34 4.2 Experimental Setup 35 4.3 Experimental Results 36 4.3.1 LEO Aiding Positioning with 4 GPS Satellites 37 4.3.2 LEO Aiding Positioning with 3 GPS Satellites and 1 IRIDIUM Satellite 39 4.4 Interim Summary 43 Chapter 5 SUMMARY AND FUTURE WORK 44 5.1 Summary 44 5.2 Future Work 44 BIBLIOGRAPHY 46

    [1] M. S. Braasch, A. J. Van Dierendonck, “GPS Receiver Architectures and Measurements,” Proceedings of the IEEE, Vol. 87, No. 1, January, 1999.
    [2] R. L. Pickholtz, D. L. Schilling, L. B. Milstein, ‘Theory of Spread-Spectrum Communications – A Tutorial,’ IEEE Transactions on Communications, Vol. COM. 30, No. 5, May, 1982
    [3] P. Enge, P. Misra, “Scanning the Issue/Technology,” Proceedings of the IEEE, Vol. 87, No. 1, January, 1999.
    [4] 宋成驊, 汪鴻生, 謝世杰, “衛星多普勒定位測量,” 測繪出版社, 7月, 1987.
    [5] “Manual for ICAO Aeronautical Mobile Satellite (ROUTE) Service Part 2 - IRIDIUM; Draft v4.0,” ICAO, 21 March 2007.
    [6] 張倬嘉, “微衛星太空級GPS接收器酬載之製作與測試,” 國立成功大學電基工程學系碩士論文, 7月, 2010.
    [7] P. Enge, et al, “Method and Receiver Using a Low Earth Orbiting Satellite Signal to Augment the Global Positioning System,” United States Patent 5944770, August 31, 1999.
    [8] D. Whelan, P, Enge, G. Gutt, “iGPS: Integrated Nav & Com Augmentation of GPS,” Boeing Defense Space & Security Phantom Works, November, 2010.
    [9] D. Whelan, G. Gutt, P. Enge, “Boeing Timing & Location: An Indoor Capable Time Transfer and Geolocation System,” Stanford PNT Symposium, November 2011.
    [10] J. Cookman, G. Gutt, and D. Lawrence, “Single Chip Receiver for GNSS and LEO Constellations,” ION JNC 2013, 20 September 2013.
    [11] J. Hill, “The Principle of the snapshot Navigation Solution based on Doppler Shift,” ION GPS conference, September, 2011.
    [12] A. Lehtinen, “Doppler Positioning with GPS,” M.S. thesis, Tampere University of Technology, October, 2001.
    [13] 周士傑, et al, “開放式國際標準應用於衛星即時排程管理-以福衛二號為例,” 台灣地理資訊學會年會暨學術研討會, 2012.
    [14] F. R. Hoots, R. L. Roehrich, “Spacetrack Report No. 3: Models for Propagation of NORAD Element Sets,” US Air Force Aerospace Defense Command, Colorado Springs, CO., December, 1980.
    [15] R. V. de Moraes et al, “Orbital Propagation for Brazilian Satellites Using NORAD Models,” Elsevier Science Ltd., 2002.
    [16] Celestrak.com, TLE download page,
    http://celestrak.com/NORAD/elements/
    [17] Dow, J.M., Neilan, R. E., and Rizos, C., The International GNSS Service in a changing landscape of Global Navigation Satellite Systems, Journal of Geodesy (2009) 83:191–198, DOI: 10.1007/s00190-008-0300-3
    [18] B.W. Remondi, “Computing Satellite Velocity using the Broadcast Ephemeris,” GPS Solutions, Vol. 8, No. 2, 2004.
    [19] NASA: iSat – Interactive Satellite Viewer
    http://science.nasa.gov/iSat/?group=iridium
    [20] C. M. R. Shahriar, “Mitigation of Interference from Iridium Satellites by Parametric Estimation and Subtraction,” M.S. thesis, Virginia Polytechnic Institute and State University, December, 2006.
    [21] D. Veeneman, Decode Systems,
    http://www.decodesystems.com/
    [22] J. B. Y. Tsui, “Fundamentals of Global Positioning System Receivers: A Software Approach,” 2nd ed., John Wiley & Sons, Inc., 2005.
    [23] 莊智清, 黃國興, “電子導航,” 全華科技圖書股份有限公司, 9月, 2003.
    [24] P. Misra, B. P. Burke, “GPS Performance in Navigation,” Proceedings of the IEEE, Vol. 87, No. 1, January, 1999.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE