| 研究生: |
林宇杏 Lin, Yu-Hsing |
|---|---|
| 論文名稱: |
雙鹽雙高分子設計之膠態電解質應用於鋰電池 Gel Electrolyte with Dual-salt and Dual Polymer Design for Lithium Batteries |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 鋰電池 、膠態高分子電解質 、聚偏二氟乙烯 、雙鋰鹽 |
| 外文關鍵詞: | Lithium battery, Gel polymer electrolyte, PVDF-co-HFP, Dual salt |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰金屬電池擁有高能量密度,在儲能系統上有相當大的潛力,然而使用傳統的液體電解質難以建立穩定的固體電解質介面層(SEI layer)和抑制鋰枝晶生長。本研究以聚偏二氟乙烯(Polyvinylidene fluoride,PVDF)高分子為主架構,混雜聚甲基丙烯酸羥乙酯(Polyhydroxyethylmethacrylate,PHEMA)高分子,溶於商用液態電解液中,並同時引入雙鋰鹽(LiTFSI-LiPF6)系統,旨在解決介面層與鋰枝晶的問題,加熱攪拌至均勻相,並注入Celgard商用隔離膜,靜置一段時間後會轉變為果凍狀之膠態電解質。
此膠態電解質於室溫下具有高導離子度(1.1×10-3 S cm-1)、寬廣的電位窗(5.0 V),通過量測膠態與液態電解質阻抗隨時間的變化,及SEM、XPS量測鋰金屬表面,去證明此膠態電解質可以形成穩定的SEI層及抑制鋰枝晶。電池性能表現方面,使用磷酸鋰鐵正極搭配鋰金屬負極,組裝成2032鈕扣型電池,於室溫(25℃)下,以0.1 C-rate的放電速率,膠態電解質擁有165 mAh g-1的電容量,以17 C-rate的高速放電速率下仍保有64 mAh g-1的電容量,遠優於液態電解質(0.1 C-rate具有160 mAh g-1的電容量,17 C-rate具有7 mAh g-1的電容量)。長效循環充放電測試下,以1C-rate進行循環充放電500圈後,電容維持率仍大於90%。電池安全性測試的部分,以0.5 mA cm-2 電流下進行500小時的短路測試,都仍未有短路的現象發生,另外,將膠態電解質製作成軟包電池,經剪斷、彎折都未發現有電解質漏液的現象發生,可見其具有一定的安全性。此自凝成膠膠態電解質具有抑制鋰枝晶及優異的充放電性能,可應用在現今的鋰電池產線。
Lithium metal batteries (LMBs) which have high energy density are promising candidate for next-generation batteries. However, it is difficult to build a stable solid electrolyte interface layer (SEI layer) and inhibit the growth of lithium dendrites using traditional liquid electrolytes. Herein, a gel electrolyte with dual-salt (LiTFSI-LiPF6) and dual polymer (PVDFcoHFP-PHEMA) design is developed for stabilize the interfacial contact between electrode and electrolyte. The gel electrolyte matrix with a physical network can regulate the anions to promote lithium ion transportation. The resulting gel polymer electrolyte presents an extremely high lithium‐ion transference number of 0.6 and ionic conductivity (1.1×10-3 S cm-1). More significantly, the synergistic effect from the dual polymer and dual salt enabling stable ion deposition effectively suppresses the growth of lithium dendrites. Armed with the GPE, stable symmetric Li/Li cells demonstrate a long cycle life of 500 h at a high current density of 1 mA cm−2 and no sign of lithium dendrite. In terms of the charge and discharge performance of battery, GPE which is assembled into Li||LiFePO4 batteries, exhibited superior capacity, high rate retention, and cycling stability. This gel electrolyte not only can basically solve the problem of LMBs but also directly apply on the current battery assembly line.
參考文獻
[1] M. S. Whittingham, "Electrical Energy Storage and Intercalation Chemistry". Science 1976, 192, 1126-1127.
[2] K. Mizushima, P. Jones, P. Wiseman, J. B. Goodenough, "LixCoO2 (0< x<-1): A New Cathode Material for Batteries of High Energy Density". Mater. Res. Bull. 1980, 15, 783-789.
[3] Y. Nishi, "The Development of Lithium Ion Secondary Batteries". Chem. 2001, 1, 406-413.
[4] B. Scrosati, "Lithium Rocking Chair Batteries: An Old Concept?". J. Electrochem. Soc. 1992, 139, 2776-2781.
[5] J. Auborn, Y. Barberio, "Lithium Intercalation Cells without Metallic Lithium". J. Electrochem. Soc. 1987, 134, 638-640.
[6] S. Megahed, B. Scrosati, "Lithium-Ion Rechargeable Batteries". J. Power Sources 1994, 51, 79-104.
[7] K. Murashko, "Thermal Modelling of Commercial Lithium-Ion Batteries". 2016.
[8] W. Qi, J. G. Shapter, Q. Wu, T. Yin, G. Gao, D. X. Cui, "Nanostructured Anode Materials for Lithium-Ion Batteries: Principle, Recent Progress and Future Perspectives". J. Mater. Chem. A 2017, 5, 19521-19540.
[9] G. E. Blomgren, "The Development and Future of Lithium Ion Batteries". J. Electrochem. Soc. 2016, 164, A5019.
[10] A. Padhi, K. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough, "Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates". J. Electrochem. Soc. 1997, 144, 1609.
[11] L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J. B. Goodenough, "Development and Challenges of LiFePO4 Cathode Material for Lithium-Ion Batteries". Energy Environ. Sci. 2011, 4, 269-284.
[12] W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, "Nickel‐Rich Layered Lithium Transition‐Metal Oxide for High‐Energy Lithium‐Ion Batteries ". Angew. Chem. Int. Ed. 2015, 54, 4440-4457.
[13] S. Dou, "Review and Prospect of Layered Lithium Nickel Manganese Oxide as Cathode Materials for Li-Ion Batteries". J SOLID STATE ELECTR 2013, 17, 911-926.
[14] S. K. Jung, H. Gwon, J. Hong, K. Y. Park, D. H. Seo, H. Kim, J. Hyun, W. Yang, K. Kang, "Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries". Adv. Energy Mater. 2014, 4, 1300787.
[15] S. K. Martha, O. Haik, E. Zinigrad, I. Exnar, T. Drezen, J. H. Miners, D. Aurbach, "On the Thermal Stability of Olivine Cathode Materials for Lithium-Ion Batteries". J. Electrochem. Soc. 2011, 158, A1115-A1122.
[16] N. M. Trease, I. D. Seymour, M. D. Radin, H. Liu, H. Liu, S. Hy, N. Chernova, P. Parikh, A. Devaraj, K. M. Wiaderek, "Identifying the Distribution of Al3+ in LiNi0.8Co0.15Al0.05O2". Chem. Mater. 2016, 28, 8170-8180.
[17] K.-J. Park, J.-Y. Hwang, H.-H. Ryu, F. Maglia, S.-J. Kim, P. Lamp, C. S. Yoon, Y.-K. Sun, "Degradation Mechanism of Ni-Enriched NCA Cathode for Lithium Batteries: Are Microcracks Really Critical?". ACS Energy Lett. 2019, 4, 1394-1400.
[18] J. Qian, L. Liu, J. Yang, S. Li, X. Wang, H. L. Zhuang, Y. Lu, "Electrochemical Surface PassivatIon of LiCoO2 Particles at Ultrahigh Voltage and Its Applications in Lithium-Based Batteries". Nat. 2018, 9, 1-11.
[19] Z. Deng, Y. Mo, S. P. Ong, "Computational Studies of Solid-State Alkali Conduction in Rechargeable Alkali-Ion Batteries". NPG Asia Mater. 2016, 8, e254-e254.
[20] Y. Mekonnen, A. Sundararajan, A. I. Sarwat, " A Review of Cathode and Anode Materials for Lithium-Ion Batteries".presented at SoutheastCon 2016.
[21] X. Sun, P. V. Radovanovic, B. Cui, "Advances in Spinel Li4Ti5O12 Anode Materials for Lithium-Ion Batteries". New J. Chem 2015, 39, 38-63.
[22] N. Nitta, F. Wu, J. T. Lee, G. Yushin, "Li-Ion Battery Materials: Present and Future". Mater. Today 2015, 18, 252-264.
[23] F. Wu, J. Maier, Y. Yu, "Guidelines and Trends for Next-Generation Rechargeable Lithium and Lithium-Ion Batteries". Chem. Soc. Rev. 2020, 49, 1569-1614.
[24] K. Kganyago, P. Ngoepe, "Structural and Electronic Properties of Lithium Intercalated Graphite LiC6". Phys. Rev. B 2003, 68, 205111.
[25] G. Chen, G. V. Zhuang, T. J. Richardson, G. Liu, P. N. Ross, "Anodic Polymerization of Vinyl Ethylene Carbonate in Li-Ion Battery Electrolyte". Electrochem. Solid-State Lett 2005, 8, A344-A347.
[26] Y. Yamada, Y. Iriyama, T. Abe, Z. Ogumi, "Kinetics of Lithium Ion Transfer at the Interface between Graphite and Liquid Electrolytes: Effects of Solvent and Surface Film". Langmuir 2009, 25, 12766-12770.
[27] G. Crabtree, E. Kocs, L. Trahey, "The Energy-Storage Frontier: Lithium-Ion Batteries and Beyond". MRS Bull. 2015, 40, 1067-1078.
[28] Q. Wang, H. Li, L. Chen, X. Huang, "Novel Spherical Microporous Carbon as Anode Material for Li-Ion Batteries". Solid State Ion. 2002, 152, 43-50.
[29] T. Ohzuku, A. Ueda, N. Yamamoto, "Zero‐Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells". J. Electrochem. Soc. 1995, 142, 1431.
[30] T.-F. Yi, L.-J. Jiang, J. Shu, C.-B. Yue, R.-S. Zhu, H.-B. Qiao, "Recent Development and ApplicatIon of Li4Ti5O12 as Anode Material of Lithium Ion Battery". J. Phys. Chem. Solids 2010, 71, 1236-1242.
[31] B. Zhao, R. Ran, M. Liu, Z. Shao, "A Comprehensive Review of Li4Ti5O12-Based Electrodes for Lithium-Ion Batteries: The Latest Advancements and Future Perspectives". Mater. Sci. Eng. R Rep. 2015, 98, 1-71.
[32] B. Yan, M. Li, X. Li, Z. Bai, J. Yang, D. XIong, D. Li, "Novel Understanding of Carbothermal Reduction Enhancing Electronic and Ionic Conductivity of Li4Ti5O12 Anode". J. Mater. Chem. A 2015, 3, 11773-11781.
[33] Y. H. Rho, K. Kanamura, "Li+ Ion Diffusion in Li4Ti5O12 Thin Film Electrode Prepared by PVP Sol–Gel Method". J. Solid State Chem 2004, 177, 2094-2100.
[34] S. Jiang, B. Zhao, Y. Chen, R. Cai, Z. Shao, "Li4Ti5O12 Electrodes Operated under Hurdle Conditions and SiO2 Incorporation Effect". J. Power Sources 2013, 238, 356-365.
[35] W.-J. Zhang, "A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries". J. Power Sources 2011, 196, 13-24.
[36] A. Casimir, H. Zhang, O. Ogoke, J. C. Amine, J. Lu, G. Wu, "Silicon-Based Anodes for Lithium-Ion Batteries: Effectiveness of Materials Synthesis and Electrode Preparation". Nano Energy 2016, 27, 359-376.
[37] H. Ying, W. Q. Han, "Metallic Sn‐Based Anode Materials: Application in High‐Performance Lithium‐Ion and Sodium‐Ion Batteries". Adv. Sci. 2017, 4, 1700298.
[38] J. D. Ocon, J. K. Lee, J. Lee, "High Energy Density Germanium Anodes for Next Generation Lithium Ion Batteries". Appl. Chem. Eng 2014, 25, 1-13.
[39] Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, "Progress in Electrolytes for Rechargeable Li-Based Batteries and Beyond". Green Energy Environ. 2016, 1, 18-42.
[40] M. Dahbi, F. Ghamouss, F. Tran-Van, D. Lemordant, M. Anouti, "Comparative Study of EC/DMC LiTFSI and LiPF6 Electrolytes for Electrochemical Storage". J. Power Sources 2011, 196, 9743-9750.
[41] C. Täubert, M. Fleischhammer, M. Wohlfahrt-Mehrens, U. Wietelmann, T. Buhrmester, "LiBOB as Electrolyte Salt or Additive for Lithium-Ion Batteries Based on LiNi0.8Co0.15Al0.05O2/Graphite". J. Electrochem. Soc. 2010, 157, A721-A728.
[42] B. S. Parimalam, B. L. Lucht, "ReductIon Reactions of Electrolyte Salts for Lithium Ion Batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI". J. Electrochem. Soc. 2018, 165, A251-A255.
[43] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, "Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery". J. Power Sources 2012, 208, 210-224.
[44] K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, "Materials for Lithium-Ion Battery Safety". Sci. Adv. 2018, 4, eaas9820.
[45] S. Chen, K. Wen, J. Fan, Y. Bando, D. Golberg, "Progress and Future Prospects of High-Voltage and High-Safety Electrolytes in Advanced Lithium Batteries: from Liquid to Solid Electrolytes". J. Mater. Chem. A 2018, 6, 11631-11663.
[46] L. Long, S. Wang, M. Xiao, Y. Meng, "Polymer Electrolytes for Lithium Polymer Batteries". J. Mater. Chem. A 2016, 4, 10038-10069.
[47] H. Akashi, K. Sekai, K.-i. Tanaka, "A Novel Fire-Retardant Polyacrylonitrile-Based Gel Electrolyte for Lithium Batteries". Electrochim. Acta 1998, 43, 1193-1197.
[48] P. Raghavan, J. Manuel, X. Zhao, D.-S. Kim, J.-H. Ahn, C. Nah, "Preparation and Electrochemical Characterization of Gel Polymer Electrolyte Based on Electrospun Polyacrylonitrile Nonwoven Membranes for Lithium Batteries". J. Power Sources 2011, 196, 6742-6749.
[49] R. Prasanth, V. Aravindan, M. Srinivasan, "Novel Polymer Electrolyte Based on Cob-Web Electrospun Multi Component Polymer Blend of Polyacrylonitrile/Poly (methyl methacrylate)/Polystyrene for Lithium Ion Batteries—Preparation and Electrochemical Characterization". J. Power Sources 2012, 202, 299-307.
[50] N. Mohamed, A. Arof, "Investigation of Electrical and Electrochemical Properties of PVDF-Based Polymer Electrolytes". J. Power Sources 2004, 132, 229-234.
[51] H. Duan, Y.-X. Yin, Y. Shi, P.-F. Wang, X.-D. Zhang, C.-P. Yang, J.-L. Shi, R. Wen, Y.-G. Guo, L.-J. Wan, "Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers". J. Am. Chem. Soc 2018, 140, 82-85.
[52] K. Garg, G. L. Bowlin, "Electrospinning Jets and Nanofibrous Structures". Biomicrofluidics 2011, 5, 013403.
[53] A. R. Alharbi, I. M. Alarifi, W. S. Khan, R. Asmatulu, "Highly Hydrophilic Electrospun Polyacrylonitrile/Polyvinypyrrolidone Nanofibers Incorporated with Gentamicin as Filter Medium for Dam Water and Wastewater Treatment". J. Memb. Separ. Tech. 2016, 5, 38-56.
[54] J. Yi, S. Guo, P. He, H. Zhou, "Status and Prospects of Polymer Electrolytes for Solid-State Li–O2 (Air) Batteries". Energy Environ. Sci. 2017, 10, 860-884.
[55] R. Murugan, V. Thangadurai, W. Weppner, "Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12". Angew. Chem. Int. Ed. 2007, 46, 7778-7781.
[56] Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, "High Ionic Conductivity in Lithium lanthanum Titanate". Solid State Commun. 1993, 86, 689-693.
[57] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, "A Lithium Superionic Conductor". Nat. Mater 2011, 10, 682-686.
[58] Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, "A Sulphide Lithium Super Ion Conductor is Superior to Liquid Ion Conductors for Use in Rechargeable Batteries". Energy Environ. Sci. 2014, 7, 627-631.
[59] M. Yashima, M. Itoh, Y. Inaguma, Y. Morii, "Crystal Structure and Diffusion Path in the Fast Lithium-Ion Conductor La0.62Li0.16TiO3". J. Am. Chem. Soc 2005, 127, 3491-3495.
[60] R. Jalem, Y. Yamamoto, H. Shiiba, M. Nakayama, H. Munakata, T. Kasuga, K. Kanamura, "Concerted Migration Mechanism in the Li Ion Dynamics of Garnet-Type Li7La3Zr2O12". Chem. Mater. 2013, 25, 425-430.
[61] R. Chen, W. Qu, X. Guo, L. Li, F. Wu, "The Pursuit of Solid-State Electrolytes for Lithium Batteries: from Comprehensive Insight to Emerging Horizons". Mater. Horiz. 2016, 3, 487-516.
[62] O. Garcia-Calvo, N. Lago, S. Devaraj, M. Armand, "Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries". Electrochim. Acta 2016, 220, 587-594.
[63] S. Tang, Q. Lan, L. Xu, J. Liang, P. Lou, C. Liu, L. Mai, Y.-C. Cao, S. Cheng, "A Novel Cross-Linked Nanocomposite Solid-State Electrolyte with Super Flexibility and Performance for Lithium Metal Battery". Nano Energy 2020, 71, 104600.
[64] S. Choudhury, S. Stalin, D. Vu, A. Warren, Y. Deng, P. Biswal, L. A. Archer, "Solid-state Polymer Electrolytes for High-Performance Lithium Metal Batteries". Nat. 2019, 10, 1-8.
[65] R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J.-P. Bonnet, T. N. Phan, D. Bertin, D. Gigmes, D. Devaux, "Single-Ion BAB Triblock Copolymers as Highly Efficient Electrolytes for Lithium-Metal Batteries". Nat. Mater 2013, 12, 452-457.
[66] T. N. Phan, S. Issa, D. Gigmes, "Poly (ethylene oxide)‐Based Block Copolymer Electrolytes for Lithium Metal Batteries". Polym. Int. 2019, 68, 7-13.
[67] S. Li, K. Jiang, J. Wang, C. Zuo, Y. H. Jo, D. He, X. Xie, Z. Xue, "Molecular Brush with Dense PEG Side Chains: Design of a Well-Defined Polymer Electrolyte for Lithium-Ion Batteries". Macromolecules 2019, 52, 7234-7243.
[68] Z. Zhao, Y. Zhang, S. Li, S. Wang, Y. Li, H. Mi, L. Sun, X. Ren, P. Zhang, "A Lithium Carboxylate Grafted Dendrite-Free Polymer Electrolyte for an All-Solid-State Lithium-Ion Battery". J. Mater. Chem. A 2019, 7, 25818-25823.
[69] C. Tao, M.-H. Gao, B.-H. Yin, B. Li, Y.-P. Huang, G. Xu, J.-J. Bao, "A Promising TPU/PEO Blend Polymer Electrolyte for All-Solid-State Lithium Ion Batteries". Electrochim. Acta 2017, 257, 31-39.
[70] H. Wang, C. Lin, X. Yan, A. Wu, S. Shen, G. Wei, J. Zhang, "Mechanical Property-Reinforced PEO/PVDF/LiClO4/SN Blend All Solid Polymer Electrolyte for Lithium Ion Batteries". J. Electroanal. Chem. 2020, 114156.
[71] M. Dirican, C. Yan, P. Zhu, X. Zhang, "Composite Solid Electrolytes for All-Solid-State Lithium Batteries". Mater. Sci. Eng. R Rep. 2019, 136, 27-46.
[72] H. Huo, B. Wu, T. Zhang, X. Zheng, L. Ge, T. Xu, X. Guo, X. Sun, "AnIon-Immobilized Polymer Electrolyte Achieved by Cationic Metal-Organic Framework Filler for Dendrite-Free Solid-State Batteries". Energy Storage Mater. 2019, 18, 59-67.
[73] M. Sethupathy, V. Sethuraman, P. Manisankar, "Preparation of PVDF/SiO2 Composite Nanofiber Membrane Using Electrospinning for Polymer Electrolyte Analysis". 2013.
[74] P. Prabakaran, R. P. Manimuthu, S. Gurusamy, "Influence of Barium Titanate Nanofiller on PEO/PVdF-HFP Blend-Based Polymer Electrolyte Membrane for Li-Battery ApplicatIons". J SOLID STATE ELECTR 2017, 21, 1273-1285.
[75] K. M. Kim, N.-G. Park, K. S. Ryu, S. H. Chang, "Characteristics of PVdF-HFP/TiO2 Composite Membrane Electrolytes Prepared by Phase Inversion and Conventional Casting Methods". Electrochim. Acta 2006, 51, 5636-5644.
[76] G. Chen, F. Zhang, Z. Zhou, J. Li, Y. Tang, "A Flexible Dual‐Ion Battery Based on PVDF‐HFP‐Modified Gel Polymer Electrolyte with Excellent Cycling Performance and Superior Rate Capability". Adv. Energy Mater. 2018, 8, 1801219.
[77] H. Zhao, N. Deng, J. Ju, Z. Li, W. Kang, B. Cheng, "Novel Configuration of Heat-Resistant Gel Polymer Electrolyte with Electrospun Poly (vinylidene fluoride-co-hexafluoropropylene) and Poly-m-phenyleneisophthalamide Composite Separator for High-Safety Lithium-Ion Battery". Mater. Lett. 2019, 236, 101-105.
[78] L. Li, M. Wang, J. Wang, F. Ye, S. Wang, Y. Xu, J. Liu, G. Xu, Y. Zhang, Y. Zhang, "Asymmetric Gel Polymer Electrolyte with High Lithium Ion Conductivity for Dendrite-Free Lithium Metal Batteries". J. Mater. Chem. A 2020, 8, 8033-8040.
[79] S. Jamalpour, M. Ghahramani, S. R. Ghaffarian, M. Javanbakht, "The Effect of Poly (hydroxyl ethyl methacrylate) on the Performance of PVDF/P(MMA-co-HEMA) Hybrid Gel Polymer Electrolytes for Lithium Ion Battery Application". Polymer 2020, 122427.
[80] J. Shim, J. S. Lee, J. H. Lee, H. J. Kim, J.-C. Lee, "Gel Polymer Electrolytes Containing Anion-Trapping Boron Moieties for Lithium-Ion Battery Applications". ACS Appl. Mater. Interfaces 2016, 8, 27740-27752.
[81] N. Wongittharom, T.-C. Lee, I.-M. Hung, S.-W. Lee, Y.-C. Wang, J.-K. Chang, "Ionic Liquid Electrolytes for High-Voltage Rechargeable Li/LiNi0.5Mn1.5O4 cells". J. Mater. Chem. A 2014, 2, 3613-3620.
[82] H. Xiang, P. Shi, P. Bhattacharya, X. Chen, D. Mei, M. E. Bowden, J. Zheng, J.-G. Zhang, W. Xu, "Enhanced Charging Capability of Lithium Metal Batteries Based on Lithium Bis (trifluoromethanesulfonyl) Imide-Lithium Bis (oxalato) Borate Dual-Salt Electrolytes". J. Power Sources 2016, 318, 170-177.
[83] W. Fan, N. W. Li, X. Zhang, S. Zhao, R. Cao, Y. Yin, Y. Xing, J. Wang, Y. G. Guo, C. Li, "A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries". Adv. Sci. 2018, 5, 1800559.
[84] S. Li, Y.-M. Chen, W. Liang, Y. Shao, K. Liu, Z. Nikolov, Y. Zhu, "A Superionic Conductive, Electrochemically Stable Dual-Salt Polymer Electrolyte". Joule 2018, 2, 1838-1856.
[85] L. Othman, K. Chew, Z. Osman, "Impedance Spectroscopy Studies of Poly (methyl methacrylate)-Lithium Salts Polymer Electrolyte Systems". Ionics 2007, 13, 337-342.
[86] J. S. Kumar, A. Subrahmanyam, M. J. Reddy, U. S. Rao, "Preparation and Study of Properties of Polymer Electrolyte System (PEO+ NaClO3)". Mater. Lett. 2006, 60, 3346-3349.
[87] C. Ghobril, M. Grinstaff, "The Chemistry and Engineering of Polymeric Hydrogel Adhesives for Wound Closure: A Tutorial". Chem. Soc. Rev. 2015, 44, 1820-1835.
[88] D. Agwu, F. Opara, N. Chukwuchekwa, D. Dike, L. Uzoechi, presented at IEEE 3rd InternatIonal Conference on Electro-Technology for NatIonal Development; IEEE: Danvers, MA, USA 2018.
[89] R. Xu, X. Q. Zhang, X. B. Cheng, H. J. Peng, C. Z. Zhao, C. Yan, J. Q. Huang, "Artificial Soft–Rigid Protective Layer for Dendrite‐Free Lithium Metal Anode". Adv. Funct. Mater. 2018, 28, 1705838.
[90] G. Bouteau, A. N. Van-Nhien, M. Sliwa, N. Sergent, J.-C. Lepretre, G. Gachot, I. Sagaidak, F. Sauvage, "Effect of Standard Light Illumination on Electrolyte’s Stability of Lithium-Ion Batteries Based on Ethylene and Di-Methyl Carbonates". Sci. Rep. 2019, 9, 1-9.
[91] S. Chereddy, P. R. Chinnam, V. Chatare, S. Patrick diLuzio, M. P. Gobet, S. G. Greenbaum, S. L. Wunder, "An Alternative Route to Single Ion Conductivity Using Multi-Ionic Salts". Mater. Horiz. 2018, 5, 461-473.
[92] X. Li, J. Zheng, M. H. Engelhard, D. Mei, Q. Li, S. Jiao, N. Liu, W. Zhao, J.-G. Zhang, W. Xu, "Effects of Imide–Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries". ACS Appl. Mater. Interfaces 2018, 10, 2469-2479.
[93] K. Elamin, M. Shojaatalhosseini, O. Danyliv, A. Martinelli, J. Swenson, "Conduction Mechanism in Polymeric Membranes Based on PEO or PVdF-HFP and Containing a Piperidinium Ionic Liquid". Electrochim. Acta 2019, 299, 979-986.
[94] L. Ye, Z. Feng, in Polymer Electrolytes, Elsevier 2010, p. 550-582.
[95] K. Kanamura, T. Umegaki, S. Shiraishi, M. Ohashi, Z.-i. Takehara, "Electrochemical Behavior of Al Current Collector of Rechargeable Lithium Batteries in Propylene Carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4F9SO2)(CF3SO2) N". J. Electrochem. Soc. 2002, 149, A185.
[96] Q. Ma, B. Tong, Z. Fang, X. Qi, W. Feng, J. Nie, Y.-S. Hu, H. Li, X. Huang, L. Chen, "Impact of Anionic Structure of Lithium Salt on the Cycling Stability of Lithium-Metal Anode in Li-S Batteries". J. Electrochem. Soc. 2016, 163, A1776.
[97] J. Lee, Y.-J. Kim, H. S. Jin, H. Noh, H. Kwack, H. Chu, F. Ye, H. Lee, H.-T. Kim, "Tuning Two Interfaces with Fluoroethylene Carbonate Electrolytes for High-Performance Li/LCO Batteries". ACS omega 2019, 4, 3220-3227.
[98] G. Qiu, C. Sun, "A Quasi-Solid Composite Electrolyte with Dual Salts for Dendrite-Free Lithium Metal Batteries". New J. Chem 2020, 44, 1817-1824.
[99] H. Zheng, H. Xiang, F. Jiang, Y. Liu, Y. Sun, X. Liang, Y. Feng, Y. Yu, "Lithium Difluorophosphate‐Based Dual‐Salt Low ConcentratIon Electrolytes for Lithium Metal Batteries". Adv. Energy Mater. 2020, 2001440.
[100] F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi, L. Wang, X.-D. Zhang, Y. Zheng, J.-J. Zhou, L. Li, "Upgrading TraditIonal Liquid Electrolyte via In Situ Gelation for Future Lithium Metal Batteries". Sci. Adv. 2018, 4, eaat5383.
[101] L. Liu, S. Gu, S. Wang, X. Zhang, S. Chen, "A LiPO2F2/LiPF6 Dual-Salt Electrolyte Enabled Stable Cycling Performance of Nickel-Rich Lithium Ion Batteries". RSC Adv. 2020, 10, 1704-1710.
[102] X. Chen, W. Xu, M. H. Engelhard, J. Zheng, Y. Zhang, F. Ding, J. Qian, J.-G. Zhang, "Mixed Salts of LiTFSI and LiBOB for Stable LiFePO4-Based Batteries at Elevated Temperatures". J. Mater. Chem. A 2014, 2, 2346-2352.
[103] X. Shangguan, G. Jia, F. Li, Q. Wang, B. Bai, "Mixed Salts of LiFSI and LiODFB for Stable LiCoO2-Based Batteries". J. Electrochem. Soc. 2016, 163, A2797.
校內:2025-08-13公開