| 研究生: |
郭信智 Kuo, Hsin-Chih |
|---|---|
| 論文名稱: |
應用於極短距離Gigabit毫米波無線通訊及非接觸式人體生理訊號感測都卜勒雷達之60-GHz CMOS收發機射頻晶片設計研究 Research on 60-GHz CMOS Fully-Integrated RF Transceivers for Very-Short-Range Gigabit Millimeter-Wave Wireless Communications and Doppler Radar RF Sensor for Noncontact Human Vital-Signs Detection |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 人造磁導體 、雜亂迴波消除器 、都卜勒雷達 、生理訊號 、毫米波 、射頻收發機 |
| 外文關鍵詞: | 60-GHz, Artificial Magnetic Conductor, Clutter Canceller, Doppler Radar, Human Vital-Signs, Millimeter-Wave, RF Transceiver |
| 相關次數: | 點閱:99 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究第一部分為整合毫米波CMOS人造磁導體(AMC)八木嵌入式晶片天線(on-chip Yagi-antenna)及平衡轉非平衡式帶通濾波器(balun BPF)之60-GHz次諧波接收機射頻前端晶片,應用於極短距離高速無線通訊。CMOS晶片式天線加入了人造磁導體結構以形成高阻抗表面,降低矽基板高損耗並提升天線輻射效率及功率增益。在微波工作站(probe station)上之無線傳輸測試(距離1公尺),射頻晶片整體轉換增益(包括天線及濾波器)與OIP3為16 dB與3 dBm。16QAM OFDM數位調變量測(距離25公分),在發射端等效全向輻射功率(EIRP)為23 dBm與640 MHz頻寬下,可達1.152 Gbps傳輸速率(位元錯誤率小於10-3)。晶片面積為1.5 × 2 mm2。第二部分研製應用於單天線非接觸式生理監控之整合洩漏迴波消除器之60-GHz毫米波直接降頻式都卜勒雷達的波導元件雛型系統與全積體化CMOS射頻感測晶片。 射頻感測晶片於人體實測(測試距離75 cm ,晶片經由7-dB損耗電纜線接至17-dBi平面陣列天線),可偵測到明顯的心跳(1 – 1.3 Hz)及呼吸(0.35 – 0.45 Hz)訊號,整體功率消耗為217 mW。此60-GHz感測射頻晶片將有助於實現應用於手持行動裝置上(如手機)做為遠端無線健康監控系統或微小振動之高整合性單晶片設計方案。
In this dissertation, the first part is the design of a 60-GHz sub-harmonic RF receiver with an integrated on-chip artificial-magnetic-conductor (AMC) Yagi antenna and a balun bandpass filter (BPF) in 90-nm CMOS. This is to pursue RF system-on-chip for 60-GHz single-chip radio with on-chip antenna-filter integration of low-cost CMOS RF front-end circuitry for very-short-range (VSR) gigabit wireless communication. The AMC structure in the on-chip antenna is to reduce the CMOS substrate loss and increase the antenna radiation efficiency and power gain. The probe-station based on-wafer wireless digital-modulation wireless transmission test has been conducted. The measured maximum data rate is 1.152 Gb/s (approximately with a BER of 10-3) in 16QAM OFDM mode over a 25-cm distance. The chip size is 1.5×2 mm2 and the power consumption is 31 mW. For the second part, at first it is devoted to develop the V-band waveguide prototype of a 60-GHz vital-signs Doppler radar system or called millimeter-wave life detection system (MLDS). Then, a fully-integrated 60-GHz 90-nm CMOS direct-conversion Doppler radar RF sensor with clutter canceller circuits is designed for single-antenna noncontact human vital-signs detection. The clutter canceller can enhance the detecting sensitivity of weak vital signals. The on-wafer experimental measurements show clearly recorded waveforms of the heartbeat (1–1.3 Hz) and breathing signals (0.35–0.45 Hz) at a distance of 75 cm (with the chip connected through a 7-dB-loss V-band cable to a 17-dBi 60-GHz patch-array printed circuit board (PCB) planar antenna). The chip size is 2×2 mm2 and the power consumption is 217 mW. The presented integrated 60-GHz vital-sign RF sensor is devoted to be integrated in small portable communication devices (such as smartphone). It will be very useful for the wireless remote physiological monitoring healthcare and tiny vibration detecting applications.
[1] Wireless Medium Access Control (MAC) and Physical Layer (Phy) Specifications for High Rate Wireless Area Network, Amendment 2, IEEE 802.15.3c, 2009. [Online]. Available: http://standards.ieee.org/getieee802/download/802.15.3c-2009.pdf
[2] A. Tomkins, R. A. Aroca, T. Yamamoto, S. T. Nicolson, Y. Doi, and S. P. Voinigescu, “A zero-IF 60 GHz 65 nm CMOS transceiver with direct BPSK modulation demonstrating up to 6 Gb/s data rates over a 2 m wireless link,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2085–2099, Aug. 2009.
[3] C. Marcu, D. Chowdhury, C. Thakkar, J.-D. Park, L.-K. Kong, M. Tabesh, Y. Wang, B. Afshar, A. Gupta, A. Arbabian, S. Gambini, R. Zamani, E. Alon, and A. M. Niknejad, “90 nm CMOS low-power 60 GHz transceiver with integrated baseband circuitry,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3434–3447, Dec. 2009.
[4] K. Okada, N. Li, K. Matsushita, K. Bunsen, R. Murakami, A. Musa, T. Sato, H. Asada, N. Takayama, S. Ito, W. Chaivipas, R. Murakami, T. Yamaguchi, Y. Takeuchi, H. Yamagishi, M. Noda, and A. Matsuzawa, “A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE802.15.3c,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2988–3004, Dec. 2011.
[5] A. Siligaris, O. Richard, B. Martineau, C. Mounet, F. Chaix, R. Ferragut, C. Dehos, J. Lanteri, L. Dussopt, S. D. Yamamoto, R. Pilard, P. Busson, A. Cathelin, D. Belot, and P. Vincent, “A 65-nm CMOS fully integrated transceiver module for 60-GHz wireless HD applications,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 3005–3017, Dec. 2011.
[6] V. Vidojkovic, G. Mangraviti, K. Khalaf, V. Szortyka, K. Vaesen, W. V. Thilo, B. Parvais, M. Libois, S. Thijs, J. R. Long, C. Soens, and P. Wambacq, “A low-power 57-to-66 GHz transceiver in 40 nm LP CMOS with -17 dB EVM at 7 Gb/s,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2012, pp. 268–269.
[7] M. F. Karim, Y.-X. Guo, M. Sun, J. Brinkhoff, L. C. Ong, K. Kang, and F. Lin, “Integration of SiP-based 60-GHz 4×4 antenna array with CMOS OOK transmitter and LNA,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp. 1869–1878, July 2011.
[8] W. T. Khan, S. Bhattacharya, C. Patterson, G. E. Ponchak and J. Papapolymerou, “Low cost 60 GHz RF front end transceiver integrated on organic substrate,” in IEEE MTT-S Int. Microw. Symp. Dig., July 2011, pp. 1–3.
[9] C. E. Patterson, W. T. Khan, G. E. Ponchak, G. S. May, and J. Papapolymerou, “A 60-GHz active receiving switched-beam antenna array with integrated Butler matrix and GaAs amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3067–3559, Nov. 2012.
[10] F.-F. He, K. Wu, W. Hong, L. Han, and X.-P. Chen, “Low-cost 60-GHz smart antenna receiver subsystem based on substrate integrated waveguide technology,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 4, pp.1156–1165, Apr. 2012.
[11] J. Lee, Y.-T. Chen, and Y.-L. Huang, “A low-power low-cost fully-integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 264–275, Feb. 2010.
[12] K. Kang, F. Lin, D. D. Pham, J. Brinkhoff, C.-H. Heng, Y. X. Guo, and X. Yuan, “A 60-GHz OOK receiver with an on-chip antenna in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1720–1731, Sep. 2010.
[13] H.-C. Kuo, H.-L. Yue, Y.-W. Ou, C.-C. Lin, and H.-R. Chuang, “A 60-GHz CMOS sub-harmonic RF receiver with integrated on-chip artificial-magnetic-conductor Yagi-antenna and balun-bandpass-filter for very-short-range gigabit communications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1681-1691, Apr. 2013.
[14] J. C. Lin, “Noninvasive microwave measurement of respiration,” Proc. IEEE, vol. 63, no. 10, p. 1530, Oct. 1975.
[15] K.-M. Chen, D. Misra, H. Wang, H.-R. Chuang, and E. Postow, “An X-band microwave life-detection system,” IEEE Trans. Biomed. Eng., vol. BME-33, pp. 697–702, Jul. 1986.
[16] H.-R. Chuang, Y.-F. Chen, and K.-M. Chen, “Automatic clutter-canceller for microwave life-detection system,” IEEE Trans. Instrum. Meas., vol. 40, no. 4, pp. 747–750, Aug. 1991.
[17] K. M. Chen, Y. H. Huang, J. Zhang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 27, no. 1, pp. 105–114, Jan. 2000.
[18] C. Li, J. Cummings, J. Lam, E. Graves, and W. Wu, “Radar remote monitoring of vital signs,” IEEE Microw. Mag., vol. 10, no. 1, pp. 47–56, Feb. 2009.
[19] B. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1073–1079, May 2007.
[20] Y. Xiao, C. Li, and J. Lin, “A portable noncontact heartbeat and respiration monitoring system using 5-GHz radar,” IEEE Sensors J., vol. 7, no. 7, pp. 1042–1043, Jul. 2007.
[21] Y. Xiao, J. Lin, O. Boric-Lubecke, and V. M. Lubecke, “Frequency tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in Ka-band,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 2023–2032, May 2006.
[22] C. Li, Y. Xiao, and J. Lin, “Experiment and spectral snalysis of a low-power Ka-band heartbeat detector measuring from four sides of a human body,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4464–4471, Dec. 2006.
[23] P. Smulders, “Exploiting the 60 GHz band for local wireless multimediaaccess: Prospects and future directions,” IEEE Commun. Mag., vol. 40, no. 1, pp. 140–147, Jan. 2002.
[24] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, and J. Lin, “0.25μm CMOS and BiCMOS single-chip direct-conversion Doppler radars for remote sensing of vital signs,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2002, pp. 348 - 349.
[25] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovacs, “Range Correlation and I/Q Performance Benefits in Single-Chip Silicon Doppler Radars for Noncontact Cardiopulmonary Monitoring,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 838–848, Mar. 2004.
[26] C. Li, Y. Xiao, and J. Lin, “A 5 GHz double-sideband radar sensor chip in 0.18 μm CMOS for non-contact vital sign detection,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 494–496, Jul. 2008.
[27] C. Li, X. Yu, C.-M. Lee, D. Li, L. Ran, and J. Lin, “High-sensitivity software-configurable 5.8-GHz radar sensor receiver chip in 0.13-μm CMOS for noncontact vital sign detection,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1410–1418, May 2010.
[28] J. H. Choi, and D. K. Kim, “A remote compact sensor for the real-time monitoring of human heartbeat and respiration rate,” IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 3, pp. 181–188, Jun. 2009.
[29] T.-Y. J. Kao, Y. Yan, T.-M. Shen, A. Y.-K. Chen, and J. Lin, “Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1649-1659, Apr. 2013.
[30] H.-R. Chuang, H.-C. Kuo, F.-L. Lin, T.-H. Huang, C.-S. Kuo, and Y.-W. Ou, “60-GHz millimeter-wave life detection system (MLDS) for noncontact human vital-signal monitoring,” IEEE Sensors J., vol. 12, no. 3, pp. 602-609, Mar. 2012.
[31] H.-C. Kuo, C.-C. Chou, C.-C. Lin, C.-H. Yu, T.-H. Huang and H.-R. Chuang, “A 60-GHz CMOS direct-conversion Doppler radar RF sensor with clutter canceller for single-antenna noncontact human vital-signs detection,” in IEEE RFIC Dig. Tech. Papers, May. 2015, pp. 35–38.
[32] H.-R. Chuang, L.-K. Yeh, P.-C. Kuo, K.-H. Tsai, and H.-L. Yue, “A 60-GHz millimeter-wave CMOS integrated on-chip antenna and bandpass filter,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 1837–1845, July 2011.
[33] H. Chu, Y.-X. Guo, F. Lin, and X.-Q. Shi, “Wideband 60 GHz on-chip antenna with an artificial magnetic conductor, in Proc. IEEE Int. Symp. RF Integr. Technol., 2009, pp. 307–310.
[34] H. Mosallaei and K. Sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate.” IEEE Trans. Antennas Propag., vol. 52, no. 9, pp. 2403–2414, Sep. 2004.
[35] S.-S. Hsu, K.-C. Wei, C.-Y. Hsu, and H.-R. Chuang, “A 60-GHz Millimeter-Wave CPW-Fed Yagi–Antenna Fabricated Using 0.18-μm CMOS Technology,” IEEE Electron Device Lett., vol. 29, no. 6, pp. 625–627, Jun. 2008.
[36] F. Yang, and Y. Rahmat-Samii, “Reflection phase characterization of the EBG ground plane for low profile wire antenna application,” IEEE Trans. Antenna Propag., vol. 51, pp. 2691–2703, Oct. 2003.
[37] A. Foroozesh, and L. Shafai, “Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas,” IEEE Trans. Antennas Propag., vol. 59, no. 1, pp. 4–20, Jan., 2011.
[38] I. Andersson, “On the theory of self-resonant grids,” The Bell System Technical Journal, vol. 55, pp. 1725–1731, 1975.
[39] C. R. Simovski, P. de Maagt, and I. V. Melchakova, “High-impedance surface having stable resonance with respect to polarization incidence angle,” IEEE Trans. Antennas Propag., vol. 53, no. 3, Mar., 2005.
[40] A. E. I. Lamminen, A. R. Vimpari, and J. Saily, “UC-EBG on LTCC for 60-GHz frequency band antenna application,” IEEE Trans. Antennas Propag., vol. 57, no. 10, Oct., 2009
[41] R. J. Langley and A. J. Drinkwater, “Improved empirical model for the Jerusalem cross,” Proc. Inst. Elect. Eng.-Microw., Opt., Antennas, vol. 129, pt. H, pp. 1–6, Feb., 1982.
[42] C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a planar filter using a zero-degree feed structure,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 10, pp. 2362–2367, Oct. 2002.
[43] C.-Y. Hsu, C.-Y. Chen, and H.-R. Chuang, “A 77-GHz CMOS on-chip bandpass filter with balanced and unbalanced outputs,” IEEE Electron Device Lett., vol. 31, no.11, pp. 1205–1207, Nov. 2010.
[44] W. K. W. Ali and S. H. AI-Charchafchi, “Using equivalent dielectric constant to simplify the analysis of patch microstrip antenna with multi layer substrates,” in Proc. IEEE AP-S Int. Symp., Jun. 1998, vol. 2, pp. 676–679.
[45] C.-Y. Hsu, C.-Y. Chen, and H.-R. Chuang, “A 60-GHz millimeter-wave bandpass filter using 0.18-μm CMOS technology,” IEEE Electron Device Lett., vol. 29, no.3, pp. 246–248, Mar. 2008.
[46] H.-C. Kuo and H.-R. Chuang, “A 60-GHz high-gain, low-power, 3.7-dB noise-figure low-noise amplifier in 90-nm CMOS,” in Europ. Microw. Integr. Circuits Conf. Oct. 2013, pp. 584–587.
[47] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M. T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May. 2007.
[48] T.-H. Wu, S.-C. Tseng, C.-C. Meng, and G.-W. Huang, “GaInP/GaAs HBT sub-harmonic Gilbert mixers using stacked-LO and leveled-LO topologies,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 5, pp.880–889, May 2007.
[49] D. M. Pozar, “Introduction to microwave system,” in Microwave Engineering, 3rd ed. New York, NY, USA: Wiley, 2004, ch. 13, pp. 633–659.
[50] “Spectrum analysis noise figure measurement,” Hewlett-Packard, Palo Alto, CA, USA, App. note 150-9, April. 1976.
[51] H.-C. Kuo and H.-R. Chuang, “Investigation of carrier frequency effect on detection performance of Doppler sensor systems for noncontact human vital-signs sensing,” 8th International Symposium on Medical Information and Communication Technology (ISMICT), Mar. 2014. pp. 1–4.
[52] Italian National Research Council, Institute for Applied Physics, “An Internet resource for the calculation of the Dielectric Properties of Body Tissues in the frequency range 10Hz-100GHz,” [Online]. Available: http://niremf.ifac.cnr.it/tissprop/
[53] R. F. Harrinton, Time Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1961.
[54] J. H. Oum, D.-W. Kim, and S. Hong, “Two frequency radar sensor for non-contact vital signal monitor,” in IEEE MTT-S Int. Microw. Symp. Dig., July 2008, pp. 919–922.
[55] C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3143–3152, Dec. 2008.
[56] L. Chioukh, H. Boutayeb, D. Deslandes, and K. Wu, “Noise an sensitivity of harmonic radar architecture for remote sensing and detection of vital signs,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 9, pp. 1847–1855, Sep. 2014.
[57] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 4112–4120, Dec. 2010.
[58] C.-Y. Kim, J.-G. Kim, and S. Hong, “A quadrature radar topology with Tx leakage canceller for 24-GHz radar applications,” IEEE Trans. Microw. Theory Tech., vol. 5, no. 7, pp. 1438-1444, Jul. 2007.
[59] H.-H. Hsieh, Y.-H. Chen, and L.-H. Lu, “A millimeter-wave CMOS LC-tank VCO with an admittance-transforming technique,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 9, pp. 1854-1861, Dec. 2007.
[60] S. K. Cheung, T. P. Halloran, W. H. Weedon, and C. P. Caldwell, “MMIC-based quadrature hybrid quasi-circulators for simultaneous transmit and receive,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 3, pp. 489-497, Mar. 2010.
[61] S. Kim, H. -C. Kim, D. -H. Kim, S. Jeon, M. Kim, and J. -S. Rieh, “58–72 GHz CMOS wideband variable gain low-noise amplifier,” IEEE Electron. Lett., vol. 47, no 16, pp. 904–906, Aug. 2011.
[62] C.-C. Kuo, Z.-M. Tsai, J.-H. Tsai, and H. Wang, “A 71–76 GHz CMOS variable gain amplifier using current steering technique,” in IEEE RFIC Dig. Tech. Papers, Jun. 2008, pp. 609–612.
[63] H. Zarei, C. T. Charles, and D. J. Allstot, “Reflective-type phase shifters for multiple antenna transceivers,”IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 8, pp. 1647-1656, Aug. 2007.
[64] J.-C. Wu, C.-C. Chang, and S.-F. Chang, and T.-Y. Chin, “A 24-GHz full-360° CMOS reflection-type phase shifter MMIC with low loss-variation,” in IEEE RFIC Dig. Tech. Papers, Jun. 2008, pp. 365–368.