簡易檢索 / 詳目顯示

研究生: 羅立彥
Luo, Li-Yan
論文名稱: 魚類野田病毒對石斑魚發育及再生腦細胞易感受性之探討
The grouper neuron cell in developing/regenerating status is highly susceptible of nodavirus infection
指導教授: 林翰佑
Lin, Han-You
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 101
中文關鍵詞: 石斑魚生長相關蛋白-43神經壞死病毒肌動蛋白纖維
外文關鍵詞: grouper, growth associated protein-43 (GAP-43), nervous necrosis virus (NNV), actin filament
相關次數: 點閱:158下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經壞死病NNV,為發生於石斑魚魚苗階段重要的疾病之一。主要的病症發生於中樞神經系統及視網膜。在現場的觀察中,發現此一病毒在青斑魚白身階段以後,其致病力有下降的趨勢。推測病毒的感染可能與魚類神經系統的發育有關。但要研究此一相關性,則需要相關神經發育因子的幫助,以界定神經發育的狀況。生長相關蛋白-43 (GAP-43) 是在神經發育與再生時在軸突生長錐會高度表現的一種蛋白,其功能為神經元軸突延伸之誘導因子。由於其表現特性,因此在哺乳動物與兩棲類動物的研究中,生長相關蛋白-43常作為評估個體神經元之發育與再生的生物標記。在先前試驗中已選殖到點帶石斑魚的生長相關蛋白-43,且證明其可以作為神經元之發育及再生的生物標記。並利用視神經損傷的方式證明可誘使生長相關蛋白-43高度表現,並增加NNV病毒在視神經的表現。但由於NNV病毒主要侵襲腦部組織。故本研究將進一步探討生長相關蛋白-43與NNV病毒間可能的關係。我們利用外科手術方式對魚隻腦部進行創傷,發現其生長相關蛋白-43的表現量有顯著的增加,表示創傷可以誘導腦部神經的再生。在此一再生狀態時以神經壞死病毒攻擊,其腦部之病毒量也有顯著的提升。在免疫組織染色的觀察上,創傷部位其生長相關蛋白-43蛋白具有高度表現,而其表現的位置與NNV病毒感染細胞位置一致。此一結果顯示,生長相關蛋白-43確實在創傷的腦區有較高量的表現,這些高量表現的細胞較易受到病毒感染。這些結果顯示,NNV的感染與腦細胞的發育再生有很明顯的關聯。此外我們在篩選與NNV外鞘蛋白互動的宿主蛋白時發現肌動蛋白纖維與生長相關蛋白-43蛋白具有相關性。且利用藥物的投與,降低石斑魚魚鰭細胞株GF-1細胞內肌動蛋白纖維的組裝,不論是在細胞內或被釋放到培養基的病毒數則有明顯的下降。因此我們推論,肌動蛋白纖維的組裝應與病毒感染早期複製有關。但其詳細的機轉目前仍在釐清當中。

    Nerve necrotic virus (NNV) was a serious pathogen in grouper fry stage. The major attack site was the central nerve system (CNS) and retina. In the observation in field, the mortality of this disease was dramatically decreased in the juvenile stage. It is deduced the NNV infection is highly related with the development and regeneration of CNS. But the CNS development biomarker is essential for the related research. Growth associated ptotein-43 (GAP-43) is a highly expressed protein during neuron developing and regenerating of axonal growth cone. In fact, the function of GAP-43 is one of the inducible factors which can extend axonal growth cone. Hence, GAP-43 is already recognized as a fabulous biomarker to evaluate the individual neuron development and regeneration in mammalian model. According to previous studies researched in our laboratory, GAP-43 used as a biomarker of neuron development and regeneration in Epinephelus coioides. And we found the mRNA of GAP-43 was elicited while the optic nerve was transected, and the NNV gene expression level was elevated while the nerve necrotic virus (NNV) was challenged. Since brain was also the major attack site of NNV, the same phenomenon of GAP-43 should be proven in brain. We create the trauma of fish brain using surgery method, and the express of GAP-43 was evaluated. The results shown the expression level of GAP-43 could also up regulated. Meanwhile, the expression NNV level of are up regulated in brain while NNV is challenged, and the NNV amount is increase after challenge in the brain trauma fish. In IHC staining, the GAP-43 was expressed in the injury brain around the puncture point, and the high GAP-43 expressed cell is suspected for NNV in the challenge fish. These revealed the development and regeneration status of brain was related with the NNV infection. Meanwhile, we select some proteins which can interact with NNV coat protein in host cell and discover the NNV coat protein can interact with actin. Than, we use the medicine inhibited assembly of actin filament to GF-1 cell, and discover amount of NNV particle in cell body or in medium are decrease in the treatment group. So, we think that it have a relationship between assemblely of actin filament and NNV replication. But the detail mechanism still need clarify in the future.

    目錄 中文摘要 I 英文摘要 III 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 附錄 XII 一、研究背景 1 1-1 外傷性腦創傷 1 1-2 腦創傷與神經細胞再生 1 1-3 生長相關蛋白-43 (GAP-43) 廣泛被當作是神經發育及再生的專一性標記 4 1-4 生長相關蛋白-43基因與蛋白功能介紹 5 1-5 肌動蛋白纖維與神經細胞 7 1-6 點帶石斑魚與神經壞死病毒 8 1-7再生中的神經細胞與神經壞死病毒 10 二、研究目的 12 三、研究方法及進行步驟 13 3-1 實驗材料 13 3-2 實驗動物 17 3-3 石斑魚腦部手術 18 3-4 神經壞死病毒攻毒試驗 18 3-5點帶石斑魚生長相關蛋白-43基因表現層次之偵測 21 3-6重組蛋白及抗體之製備 27 3-7 免疫組織染色 (Immunohistochemistry, IHC) 41 3-8 免疫沉澱 (Immunoprecipitation, IP) 43 3-9 使用細胞鬆弛素D (cytochalasin D, CytoD) 抑制GF-1細胞肌動蛋白纖維的形成 44 四、實驗結果 46 4-1 由基因層面探討神經發育和NNV之間的關聯性 46 4-2 從組織切片染色探討神經發育和NNV之間的關聯性 47 4-3 使用免疫沉澱法以及西方墨點法探討與NNV有交互作用的蛋白 50 4-4 利用GF-1細胞觀察肌動蛋白是否會影響NNV的感受性 53 五、討論與總結 56 5-1藉由腦部創傷探討神經發育以及NNV感染之關聯性 56 5-2藉由切除生長相關蛋白-43頭部25個胺基酸提昇在大腸桿菌的表現量 59 5-3抑制肌動蛋白纖維生成會降低NNV的複製數 59 5-4生長相關蛋白-43可以促進肌動蛋白纖維的組裝 61 5-5除了神經壞死病毒,部分病毒也可與肌動蛋白纖維 (actin filament) 有互動存在 62 5-6總結 63 六、參考資料 65 6-1 參考相關書籍 65 6-2 參考相關期刊 65 七、圖表 74 八、附錄 96   表目錄 表一、本實驗及常用引子序列 74   圖目錄 圖一、以real-time PCR偵測生長相關蛋白-43 (GAP-43) 之表現量 75 圖二、以real-time PCR偵測生長相關蛋白-43 (GAP-43) 於攻毒後之表現量 76 圖三、以real-time PCR偵測神經壞死病毒 (NNV) 於攻毒後之表現量 77 圖四、以AlignX 比較完整的生長相關蛋白-43和截斷後之生長相關蛋白-43 78 圖五、生長相關蛋白-43於E. Coli內誘導之表現情形 79 圖六、定量並鑑別純度於純化後之rGAP-43 80 圖七、測試由小鼠製作之生長相關蛋白-43多株抗體之專一性 81 圖八、定量並鑑別純度於純化後之NNV coat protein 82 圖九、測試由兔子製作之NNV coat protein 多株抗體之專一性 83 圖十、使用HE染色觀察假開腦組以及腦部創傷組之端腦切片 84 圖十一、使用共軛焦顯微鏡觀察控制組以及腦部創傷組之蛋白表現分布 85 圖十二、以100倍物鏡之共軛焦顯微鏡觀察腦部創傷組之蛋白表現分佈 86 圖十三、使用免疫沉澱探討與NNV有交互作用的蛋白 87 圖十四、使用免疫沉澱探討與肌動蛋白有交互作用的蛋白。西方墨點使用兔抗NNV抗體進行呈色 88 圖十五、使用免疫沉澱探討肌肉細胞內的肌動蛋白是否可與NNV有互動存在。西方墨點使用兔抗NNV抗體進行呈色 89 圖十六、使用免疫沉澱探討NNV是否也會與GF-1細胞內的肌動蛋白蛋白交互作用。西方墨點使用鼠抗肌動蛋白抗體進行呈色 90 圖十七、使用MTT assay測定cytoD對細胞的毒性 91 圖十八、使用共軛焦顯微鏡觀察GF-1細胞使用細胞凝集素D後細胞型態的改變 92 圖十九、使用real-time PCR測定GF-1細胞處理細胞鬆弛素D後培養基中NNV的數量 94 圖二十、使用real-time PCR測定GF-1細胞處理細胞鬆弛素D後細胞內NNV的數量 95   附錄 附錄一、斑馬魚腦之結構 96 附錄二、使用全長的生長相關蛋白-43於大腸桿菌中表現的狀況 97 附錄三、以pre-immune血清以及兔抗NNV進行免疫沉澱。西方墨點使用鼠抗肌動蛋白抗體進行呈色 98 附錄四、生長相關蛋白-43在出生後不同天數之表現量 99 附錄五、使用共軛焦顯微鏡觀察pre-immune以及另一腦部創傷組之蛋白表現分布 100 附錄六、以100倍物鏡之共軛焦顯微鏡觀察另一腦部創傷組切片之蛋白表現分布 101

    Aigner, L., S. Arber, et al. "Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice." Cell 83 (2) : 269-278. (1995).

    Basi, G. S., R. D. Jacobson, et al. "Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth." Cell 49 (6) : 785-791. (1987).

    Benowitz, L. I. and A. Routtenberg "GAP-43: an intrinsic determinant of neuronal development and plasticity." Trends Neurosci 20 (2) : 84-91. (1997).

    Benowitz, L. I. and N. I. Perrone-Bizzozero "The relationship of GAP-43 to the development and plasticity of synaptic connections." Ann N Y Acad Sci 627: 58-74. (1991).

    Ben-Yaakov, K., S. Y. Dagan, et al. "Axonal transcription factors signal retrogradely in lesioned peripheral nerve." EMBO J 31(6): 1350-1363. (2012).

    Bomze, H. M., K. R. Bulsara, et al. "Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons." Nat Neurosci 4(1): 38-43. (2001).

    Breuil G., JR. Bonami, et al. "Viral infection (picorna-like virus) associated with mass mortalities in hatchery-reared sea-bass (Dicentrarchus labrax) larvae and juveniles" Aquaculture 97:109-116. (1991).

    Chang, F., L. S. Steelman, et al. "Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention." Leukemia 17(7): 1263-1293. (2003).

    Chi, S. C., J. R. Shieh, et al. "Genetic and antigenic analysis of betanodaviruses isolated from aquatic organisms in Taiwan." Dis Aquat Organ 55 (3) : 221-228. (2003).

    Chi SC, Lo BJ, Lin SC "Characterization of grouper nervous necrosis virus (GNNV) . " J Fish Dis 24:3–13. (2001).

    Chapouton, P., R. Jagasia, et al. "Adult neurogenesis in non-mammalian vertebrates." Bioessays 29 (8) : 745-757. (2007).

    Clement, C., V. Tiwari, et al. "A novel role for phagocytosis-like uptake in herpes simplex virus entry." J Cell Biol 174(7): 1009-1021. (2006).

    Coggins, P. J. and H. Zwiers "B-50 (GAP-43) : biochemistry and functional neurochemistry of a neuron-specific phosphoprotein." J Neurochem 56 (4) : 1095-1106. (1991).

    Comps, M.; Raymond, J. C. "Virus-like particles in the retina of
    the sea-bream, Sparus aurata.Bull. " Fish Pathol 16: 1–2. (1996).

    Craig, A. M. and G. Banker "Neuronal polarity." Annu Rev Neurosci 17: 267-310. (1994).

    Davis, A. E. "Mechanisms of traumatic brain injury: biomechanical, structural and cellular considerations." Crit Care Nurs Q 23 (3) : 1-13. (2000).

    Denny, J. B. "Molecular mechanism, biological action, and neuropharmacology of the growth-associated protein GAP-43" Current Neuropharmacology. 4: 293-304. (2006).

    Di Giovanni, S., C. D. Knights, et al. "The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration." EMBO J 25(17): 4084-4096. (2006).

    Dotti, C. G., C. A. Sullivan, et al. "The establishment of polarity by hippocampal neurons in culture." J Neurosci 8 (4) : 1454-1468. (1988).

    Forest, T., S. Barnard, et al. "Active intranuclear movement of herpesvirus capsids." Nat Cell Biol 7(4): 429-431. (2005).

    Forscher, P. and S. J. Smith "Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone." J Cell Biol 107(4): 1505-1516. (1988).

    Gaetz, M "The neurophysiology of brain injury." Clin Neurophysiol 115 (1) : 4-18. (2004).

    Giger, R. J., E. R. Hollis, 2nd, et al. "Guidance molecules in axon regeneration." Cold Spring Harb Perspect Biol 2(7): a001867. (2010).

    Goldberg, J. L. "How does an axon grow?" Genes Dev 17 (8) : 941-958. (2003).

    Hens, J. J., F. Benfenati, H. B. et al. "B-50/GAP-43 binds to actin filaments without affecting actin polymerization and filament organization " Journal of Neurochemistry 61 (4) : 1530-1533. (1993).

    He, Q., Dent, E.W., Meiri, K.F. "Modulation of actin filament behavior by GAP-43 (neuromodulin) is dependent on the phosphorylation status of serine 41, the protein kinase C site. " J. Neurosci 17, 3515-3524. (1997).

    Hossain-Ibrahim, M. K., K. Rezajooi, et al. "Effects of lipopolysaccharide-induced inflammation on expression of growth-associated genes by corticospinal neurons." BMC Neurosci 7: 8. (2006).

    Jankowski, M. P., S. L. McIlwrath, et al. "Sox11 transcription factor modulates peripheral nerve regeneration in adult mice." Brain Res 1256: 43-54. (2009).

    Kaneda, M., Magashima. M., et al. "growth-associated protein (GAP43) is a biochemical marker for the whole period of optic nerve regeneration." Advances in experimental medicine and biology 664: 97-104. (2010).

    Koriyama Y, Homma K, Sugitani K et al. "Upregulation of IGF-I in the goldfish retinal ganglion cells during the early stage of optic nerve regeneration. " Neurochem Int 50:749–756. (2007) .

    Larsson, C "Protein kinase C and the regulation of the actin cytoskeleton." Cell Signal 18(3): 276-284. (2006).

    Liang, X., Y. Lu, et al. "Mass spectrometric analysis of GAP-43/neuromodulin reveals the presence of a variety of fatty acylated species." J Biol Chem 277 (36) : 33032-33040. (2002).

    Lindwall, C. and M. Kanje "Retrograde axonal transport of JNK signaling molecules influence injury induced nuclear changes in p-c-Jun and ATF3 in adult rat sensory neurons." Mol Cell Neurosci 29(2): 269-282. (2005).

    Liu, Y., D. A. Fisher, et al. "Intracellular sorting of neuromodulin (GAP-43) mutants modified in the membrane targeting domain." J Neurosci 14 (10) : 5807-5817. (1994).

    Liu, Y. and E. M. Rouiller "Mechanisms of recovery of dexterity following unilateral lesion of the sensorimotor cortex in adult monkeys." Exp Brain Res 128 (1-2) : 149-159. (1999).

    Lyman, M. G. and L. W. Enquist "Herpesvirus interactions with the host cytoskeleton." J Virol 83(5): 2058-2066. (2009).

    Maas, A. I., N. Stocchetti, et al. "Moderate and severe traumatic brain injury in adults." Lancet Neurol 7 (8): 728-741. (2008).

    Manabu Kaneda, et al. "Growth-Associated Protein43 (GAP43) Is a Biochemical Marker for the Whole Period of Fish Optic Nerve Regeneration" Retinal Degenerative Diseases 664: 97-104. (2010).

    Mandolesi, G., F. Madeddu, et al. "Acute physiological response of mammalian central neurons to axotomy: ionic regulation and electrical activity." FASEB J 18(15): 1934-1936. (2004).

    Masel, B. E. and D. S. DeWitt "Traumatic brain injury: a disease process, not an event." J Neurotrauma 27 (8) : 1529-1540. (2010).

    Matsukawa T, Sugitani K, Mawatari K et al. "Role of purpurin as retinol-binding protein in goldfish retina during the early stage of optic nerve regeneration: its priming action on neurite outgrowth." J Neurosci 24: 8346–8353. (2004).

    Meiri, K. F., J. L. Saffell, et al. "Neurite outgrowth stimulated by neural cell adhesion molecules requires growth-associated protein-43 (GAP-43) function and is associated with GAP-43 phosphorylation in growth cones." J Neurosci 18 (24) : 10429-10437. (1998).

    Meiri, K. F., J. P. Hammang, et al. "Mutagenesis of ser41 to ala inhibits the association of GAP-43 with the membrane skeleton of GAP-43-deficient PC12B cells: effects on cell adhesion and the composition of neurite cytoskeleton and membrane." J Neurobiol 29 (2) : 213-232. (1996).

    Michael Hocquemiller, Sandrine Vitry, et al. "GAP43 Overexpression and Enhanced Neurite Outgrowth in Mucopolysaccharidosis Type IIIB Cortical Neuron Cultures" Journal of Neuroscience Research 88:202–213. (2010).

    Moore, D. L. and J. L. Goldberg "Multiple transcription factor families regulate axon growth and regeneration." Dev Neurobiol 71(12): 1186-1211. (2011).

    Munday BL., JS. Langdon et al. "Mass mortality associated with a viral-induced vacuolating encephalopathy and retinopathy of larval and juvenile barramundi, Lates calcarifer Bloch" Aquaculture 103:197-211. (1992).

    Nadeau, S., P. Hein, et al. "A transcriptional role for C/EBP beta in the neuronal response to axonal injury." Mol Cell Neurosci 29(4): 525-535. (2005).

    Neukirchen, D. and F. Bradke "Neuronal polarization and the cytoskeleton." Semin Cell Dev Biol 22(8): 825-833. (2011).

    Nishizawa, T., M. Furuhashi, et al. "Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene." Appl Environ Microbiol 63 (4) : 1633-1636. (1997).

    Oliver, K. R and J.K Fazaker "Transneuronal spread of Semliki Forest virus in the developing mouse olfactory system is determined by neuronal maturity." Neuroscience 82(3): 867–877. (1998).

    Oliver, K. R., M. F. Scallan, et al. "Susceptibility to a neurotropic virus and its changing distribution in the developing brain is a function of CNS maturity." J Neurovirol 3(1): 38-48. (1997).

    Patodia, S. and G. Raivich "Downstream effector molecules in successful peripheral nerve regeneration." Cell Tissue Res 349(1): 15-26. (2012).

    Raivich, G., M. Bohatschek, et al. "The AP-1 transcription factor c-Jun is required for efficient axonal regeneration." Neuron 43(1): 57-67. (2004).

    Raivich, G., R. Hellweg, et al. "NGF receptor-mediated reduction in axonal NGF uptake and retrograde transport following sciatic nerve injury and during regeneration." Neuron 7(1): 151-164. (1991).

    Robertson, I. H. and J. M. Murre "Rehabilitation of brain damage: brain plasticity and principles of guided recovery." Psychol Bull 125 (5) : 544-575. (1999).

    Rupp, B., M. F. Wullimann, et al. "The zebrafish brain: a neuroanatomical comparison with the goldfish." Anat Embryol (Berl) 194 (2) : 187-203. (1996).

    Sakisaka, T., W. Ikeda, et al. "The roles of nectins in cell adhesions: cooperation with other cell adhesion molecules and growth factor receptors." Curr Opin Cell Biol 19(5): 593-602. (2007).

    S C Chi, B J Lo and S C Lin "Characterization of grouper nervous necrosis virus (GNNV) "Journal of Fish Diseases 24: 3-13. (2001).

    Schaefer, A. W., V. T. Schoonderwoert, et al. "Coordination of actin filament and microtubule dynamics during neurite outgrowth." Dev Cell 15(1): 146-162. (2008).

    Shapiro, L., J. Love, et al. "Adhesion molecules in the nervous system: structural insights into function and diversity." Annu Rev Neurosci 30: 451-474. (2007).

    Shea, T. B., N. I. Perrone-Bizzozero, et al. "Phospholipid-mediated delivery of anti-GAP-43 antibodies into neuroblastoma cells prevents neuritogenesis." J Neurosci 11(6): 1685-1690. (1991).

    Skene, J. H. and I. Virag "Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43." J Cell Biol 108 (2) : 613-624. (1989).

    Soblosky, J. S., M. A. Matthews, et al. "Traumatic brain injury of the forelimb and hindlimb sensorimotor areas in the rat: physiological, histological and behavioral correlates." Behav Brain Res 79 (1-2) : 79-92. (1996).

    Strittmatter, S. M., C. Fankhauser, P. L. Huang, H. Mashimo and M. C. Fishman "Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43" Cell 80 (3) : 445-452. (1995).

    Sugitani K, Matsukawa T, Koriyama Y et al. "Upregulation of retinal transglutaminase during the axonal elongation stage of goldfish optic nerve regeneration. " Neuroscience 142:1081–1092. (2006).

    Terman, J. R., X. M. Wang and G. F. Martin "Repair of the transected spinal cord at different stage of development in the North American opossum, Didelphis virginiana" Brain Research Bulletin 53 (6) :845-855. (2000).

    Thompson, H. J., J. Lifshitz, et al. "Lateral fluid percussion brain injury: a 15-year review and evaluation." J Neurotrauma 22 (1) : 42-75. (2005).

    van Leeuwen, H., G. Elliott, et al. "Evidence of a role for nonmuscle myosin II in herpes simplex virus type 1 egress." J Virol 76(7): 3471-3481. (2002).

    Wang, J. L., J. L. Zhang, et al. "Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection." PLoS Negl Trop Dis 4(8). (2010).

    Xiang, Y., K. Zheng, et al. "Cofilin 1-mediated biphasic F-actin dynamics of neuronal cells affect herpes simplex virus 1 infection and replication." J Virol 86(16): 8440-8451. (2012).

    Xiong, Y., A. Mahmood, et al. "Animal models of traumatic brain injury." Nat Rev Neurosci 14 (2) : 128-142. (2013).

    Yang, J., L. Zou, et al. "Identification and characterization of a 43 kDa actin protein involved in the DENV-2 binding and infection of ECV304 cells." Microbes Infect 15(4): 310-318. (2013).

    Yoshikoshi, K. and K. Inoue "Viral nervous necrosis in hatchery-reared larvae and juveniles of Japanese parrotfish, Oplegnathus fasciatus (Temminck & Schlegel)" J Fish Dis 13:69-77. (1990).

    Zuber, M. X., D. W. Goodman, et al. "The neuronal growth-associated protein GAP-43 induces filopodia in non-neuronal cells." Science 244 (4909) : 1193-1195. (1989).

    下載圖示 校內:2018-08-26公開
    校外:2018-08-26公開
    QR CODE