簡易檢索 / 詳目顯示

研究生: 林世永
Lin, Shih-Yun
論文名稱: 單側操控輪椅之開發與運動心肺功能評估
Develop and Cardiopulmonary Exercise Test of Unilateral-operated Wheelchair
指導教授: 張冠諒
Chang, G. L.
蔡昆宏
Tsai, K. H.
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 100
中文關鍵詞: 腦中風運動心肺功能測試實地測試輪椅偏癱
外文關鍵詞: field test, cardiopulmonary exercise test, wheelchair, stroke, hemiplegia
相關次數: 點閱:97下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著國人平均壽命逐年增加,腦血管意外(俗稱腦中風)已成為台灣高齡化社會常見的疾病,而發病後倖存者後續的生活照護,更是一項重要的課題。中風病患之輔具需求,以行動輔具佔48.2 %為最多,其中輪椅提供了最佳的移動性及穩定性,然而對於只有單側肢體健全的中風偏癱患者,操控專為下肢肢體障礙患者設計之傳統雙上肢驅動輪椅,不但會因為不對稱的施力方式造成輪椅偏向,也容易在斜坡上發生危險。

      本研究針對中風偏癱患者之使用需求,設計開發一新操作型態之單側操控輪椅,並徵召15位中風偏癱患者參與臨床實驗,其實驗結果將與另外15位健康受試者的結果做趨勢對照。實驗方法則運用實地測試及運動心肺功能測試,來檢測輪椅之操控性與使用時之心肺生理反應,進而與現有兩型單側操控輪椅做比較。

      結果顯示,本研究所開發之新型單側膝關節操控輪椅在實地測試方面所耗費的總驅動時間與總偏移時間都明顯較少於其餘兩型輪椅(p<0.05),所產生的總偏移次數也明顯較少,而受試者的自覺用力係數,也都顯示新型輪椅實地驅動上較為輕鬆,由此可知此型輪椅確實具有較良善的操控性能;在運動心肺功能測試方面,新型輪椅在相同驅動距離下,所耗費的總時間、平均速度、最大攝氧量與生理耗能指數等都小於其它兩型輪椅,且受試者的自覺用力係數,也顯示此型輪椅較為輕鬆。整體結果顯示,新型輪椅在相同條件控制下所需要的能量消耗較低,驅動效率較高,是一真正符合中風偏癱瘓者使用之輪椅。

      本研究整合中風偏癱患者單側操控輪椅之設計與後續之評估,兼顧了使用者之需求與輪椅之實用性,為患者找到一種安全且簡易的移行方式。

     CVA (Cerebral vascular accident, stroke) is a common disease with the increasing of average life span in advanced age society like Taiwan. Therefore, take care of hemiplegia surviving fortunately after stroke is gradually essential. As we know, wheelchair offers the greatest mobility and stability for hemiplegia who needs mobility aids to locomotion. However,traditional wheelchair was designed for patient with normal upper limbs. The asymmetrical propel manner will be strait and dangerous for hemiplegia who only has single unaffected side.

     In this study, we design and develop a unilateral knee joint operated wheelchair for hemiplegia and evaluate it by field and cardiopulmonary exercise test. Fifteen hemiplegia patients are recruited to participate in the test. They are asked to propel three kinds of unilateral-operated wheelchair including new type wheelchair designed by us, and the tendency of the result is compared with another fifteen health volunteers’.

     The results demonstrate significantly that subjects spend less time to finish all test processes using new type wheelchair, and make fewer numbers to deviate out from the confined area in field test. In cardiopulmonary exercise test, subjects also need less time, and less.oxygen consumption (VO2max) to finish test by new type wheelchair. Furthermore, the average velocity, physiological cost index (PCI) and rating perceived exertion (RPE) also show that the new type wheelchair is much easier to be operated. Therefore, especially for hemiplegia, the new type wheelchair is not only safe but also more efficient and easy operated than other types.

    中文摘要…………………………………………………………Ⅰ 英文摘要…………………………………………………………Ⅱ 致謝………………………………………………………………Ⅲ 目錄………………………………………………………………Ⅳ 表目錄……………………………………………………………Ⅶ 圖目錄……………………………………………………………Ⅷ 第一章 緒論 …………………………………………………… 1  1-1 研究背景………………………………………………… 1  1-2 研究目的………………………………………………… 3  1-3 研究流程………………………………………………… 4  1-4 論文架構………………………………………………… 7 第二章 文獻探討……………………………………………… 8  2-1 傳統手動輪椅……………………………………………8   2-1-1 構造分析…………………………………………… 8   2-1-2 使用族群…………………………………………… 12   2-1-3 動作分析與驅動效率……………………………… 13   2-1-4 常見傷害…………………………………………… 15   2-1-5 缺點整合…………………………………………… 16  2-2 腦中風……………………………………………………17   2-2-1 類型與症狀………………………………………… 17   2-2-2 中風患者驅動傳統輪椅之動作與效率分析……… 20   2-2-3 中風患者之個別化行動輔具……………………… 21  2-3 現有改良式手動輪椅探討………………………………23   2-3-1 中風患者對輪椅的看法與接受程度……………… 23   2-3-2 上肢驅動型………………………………………… 24   2-3-3 下肢驅動型………………………………………… 26   2-3-4 下肢驅動輪椅專利探討…………………………… 28  2-4 輪椅之操控與效能評估…………………………………33   2-4-1 實地測試…………………………………………… 33   2-4-2 心肺適能簡介……………………………………… 35   2-4-3 運動心肺功能測試………………………………… 37 第三章 輪椅功能模型之設計與製作………………………… 40  3-1 臨床觀察與問題分析……………………………………41  3-2 需求探討與概念整合……………………………………42  3-3 概念具體化………………………………………………44   3-3-1 具體概念建構……………………………………… 45   3-3-2 實體功能原型製作………………………………… 47   3-3-3 介面測試與細部修改……………………………… 48 第四章 實驗評估……………………………………………… 52  4-1 受試者……………………………………………………53  4-2 實地測試…………………………………………………54   4-2-1 實地測試設備……………………………………… 54   4-2-2 實地測試場地……………………………………… 57   4-2-3 實地測試方法……………………………………… 58  4-3 運動心肺功能測試………………………………………59   4-3-1 運動心肺功能測試設備…………………………… 59   4-3-2 運動心肺功能測試場地…………………………… 61   4-3-3 運動心肺功能測試方法…………………………… 62  4-4 資料處理與統計分析……………………………………63 第五章 實驗結果……………………………………………… 65  5-1 受試者基本資料分析……………………………………65  5-2 實地測試結果……………………………………………66  5-3 運動心肺功能測試結果…………………………………75 第六章 討論與建議…………………………………………… 81  6-1 實地測試結果討論………………………………………81  6-2 運動心肺功能測試結果討論……………………………83  6-3 綜合討論與未來展望……………………………………86 參考文獻………………………………………………………… 90 附錄……………………………………………………………… 96 附錄一、自覺用力係數表……………………………………… 96 附錄二、受試者須知…………………………………………… 97 附錄三、基本資料……………………………………………… 98 附錄四、受試者同意書………………………………………… 99 附錄五、生物醫學工程創意設計製作競賽獎狀………………100            表 目 錄 表3.1 重要需求項目……………………………………………43 表5.1 基本資料…………………………………………………65 表5.2 健康人實地測試整體表現………………………………67 表5.3 病患實地測試整體表現…………………………………67 表5.4 健康人直線區段表現……………………………………70 表5.5 病患直線區段表現………………………………………70 表5.6 健康人轉彎區段表現……………………………………72 表5.7 病患轉彎區段表現………………………………………72 表5.8 健康人自覺用力係數……………………………………74 表5.9 病患自覺用力係數………………………………………74 表5.10 健康人心肺測試表現 ………………………………… 75 表5.11 病患心肺測試表現 …………………………………… 75 表5.12 健康人依速度分組比較 ……………………………… 79 表5.13 病患依速度分組比較 ………………………………… 79            圖 目 錄 圖1.1 研究流程………………………………………………… 6 圖2.1 傳統手動輪椅…………………………………………… 8 圖2.2 手動輪椅驅動分析………………………………………14 圖2.3 槓桿驅動式輪椅…………………………………………25 圖2.4 划船動作之上肢驅動模式………………………………26 圖2.5 搖桿驅動式手動輪椅……………………………………26 圖2.6 下肢驅動型輪椅…………………………………………27 圖2.7 改良式下肢驅動型輪椅…………………………………28 圖2.8 專利一……………………………………………………29 圖2.9 專利二……………………………………………………30 圖2.10 專利三 ………………………………………………… 31 圖2.11 專利四 ………………………………………………… 32 圖2.12 皮帶式下肢驅動型輪椅 ……………………………… 34 圖2.13 滑板式下肢驅動型輪椅 ……………………………… 34 圖2.14 擺動式下肢驅動型輪椅 ……………………………… 35 圖3.1 設計程序流程……………………………………………41 圖3.2 手與腳獨自驅動一輪概念示意圖………………………45 圖3.3 轉向操作桿………………………………………………46 圖3.4 檔位轉換器與煞車………………………………………46 圖3.5 驅動機構…………………………………………………47 圖3.6 變速器……………………………………………………47 圖3.7 單側膝關節操控輪椅概念設計圖………………………47 圖3.8 功能原型製作……………………………………………48 圖3.9 功能原型製作……………………………………………48 圖3.10 功能原型後視圖 ……………………………………… 48 圖3.11 功能原型前視圖 ……………………………………… 48 圖3.12 修改後之驅動機構 …………………………………… 50 圖3.13 修改前之驅動桿 ……………………………………… 50 圖3.14 修改後之驅動桿 ……………………………………… 50 圖3.15 細部修改後之單側膝關節操控輪椅後視圖 ………… 51 圖3.16 細部修改後之單側膝關節操控輪椅前視圖 ………… 51 圖4.1 實驗架構與流程…………………………………………52 圖4.2 實驗測試流程……………………………………………54 圖4.3 第一型 單手驅動輪椅…………………………………55 圖4.4 第二型 單側踝關節操控輪椅…………………………56 圖4.5 第三型 單側膝關節操控輪椅…………………………56 圖4.6 實地測試場地示意圖……………………………………57 圖4.7 實地測試場地……………………………………………58 圖4.8 受試者執行實地測試之情形……………………………58 圖4.9 實地測試流程……………………………………………59 圖4.10 氣體分析測量儀器 …………………………………… 60 圖4.11 組裝後之氣體分析儀器 ……………………………… 60 圖4.12 測速器 ………………………………………………… 61 圖4.13 平台式滾輪 …………………………………………… 61 圖4.14 運動心肺功能測試場地 ……………………………… 61 圖4.15 受試者執行運動心肺功能測試之情形 ……………… 61 圖4.16 運動心肺功能測試流程 ……………………………… 62 圖5.1 總時間……………………………………………………68 圖5.2 總偏時時間………………………………………………68 圖5.3 總偏移次數………………………………………………69 圖5.4 總直線時間………………………………………………70 圖5.5 總直線偏移時間…………………………………………71 圖5.6 總直線偏移次數…………………………………………71 圖5.7 總轉彎時間………………………………………………72 圖5.8 總轉彎偏移時間…………………………………………73 圖5.9 總轉彎偏移次數…………………………………………73 圖5.10 自覺用力係數 ………………………………………… 74 圖5.11 總時間 ………………………………………………… 76 圖5.12 最大攝氧量 …………………………………………… 76 圖5.13 生理耗能指數 ………………………………………… 77 圖5.14 自覺用力係數 ………………………………………… 78 圖5.15 中速組之最大攝氧量 ………………………………… 80

    1. 內政部統計處統計資訊服務網 
     http://www.moi.gov.tw/stat/index.asp

    2. 中國國家標準CNS 13575-2,輪椅-最大總尺度,經濟部中央標
     準局,1995。

    3. 王斌良,偏癱患者專用輪椅之設計與評估,國立成功大學醫學
     工程研究所碩士論文,2003。

    4. 行政院衛生署衛生統計資訊網
     http://www.doh.gov.tw/statistic/index.htm

    5. 吳英黛,呼吸循環系統物理治療,第十三章肌肉活動與運動反
     應,1999:181-196。

    6. 林安棋,可變速驅動之休閒手動輪椅設計,國立中山大學機械
     工程研究所碩士論文,2001。

    7. 林奕良,配合改良上肢運動模式之新型輪椅設計,國立中山大
     學機械工程研究所碩士論文,2000。

    8. 梁秋萍,周適偉,林聰樺,潘健理,斐育晟,朱岳喬等,身心
     障礙者對於個別化醫療復健輔助器具設計服務需求暨市場需求
     調查,台灣復健醫誌2004;32(1): 1-10 。

    9. 陳柏睿,簡易可攜式電動輪椅之設計與開發,國立成功大學醫
     學工程研究所碩士論文,2004。

    10. 梁蕙雯,輪椅之簡介及處方,當代醫學,第二十二卷,第三
      期,民84。

    11. 黃銘璋,手動輪椅驅動機構之改良,國立中山大學機械系專
      題研究計畫,1992。

    12. 游萬來,李玉龍,林榮泰,為殘障者設計的人因工程,工業
      設計協會,台北,民75。

    13. 蔚順華,肢體障礙者個別化復健輔具之研究,行政院衛生署
      科技發展合約型計畫,DOH89-TD-1193 ,民89。

    14. Ashburrn A and Lynch M, Disadvantages of The Early Use of
      Wheelchairs in The Treatment of Hemiplegia. Clin Rehabil
      1988; 2:327-331.

    15. Barker DJ, Reid D and Cott C, Acceptance Meanings of Wheelchair
      Use in Senior Stroke Survivors. The Am J of Occupational Therapy
      2004; 58(2):221-230.

    16. Barrett JA, Watkins C and Plant R, The COSTAR Wheelchair
      Study: A Two-Centre Pilot Study of Self-propulsion in A
      Wheelchair in Early Strok Rehabilitation. Clin Rehabil 2001;
      15:32-41.

    17. Becker G, Continuity after a Stroke: Implications of Lifecourse
      Disruption in Old Age. The Gerontologist 1993; 33(2):148-158.

    18. Berkheimer JC, Leg Mobilized Attachments for Wheelchairs. U.S.
      Patent No. 5,273,304, 1993.

    19. Bloswick DS, Erickson J, Brown DR, Howell G, Mecham W,
      Maneuverability and Usability Analysis of Three Knee-
      Extension Propelled Wheelchairs. Disability and
      Rehabilitation 2003; 25(4-5): 197-206.

    20. Blower P, The Advantages of The Early Use of Wheelchairs
      in The Treatment of Hemiplagia. Clin Rehabil 1988; 2:323-325.

    21. Bobath B, Adult Hemiplegia Evaluation and Assessment (3rd
      Edition). London:Heinemann 1990.

    22. Boer YA, Cambach W, Veeger HEJ and van der Woude LHV, A
      Newly Designed Lever Mechanism. J of Rehabilitation
      Science 1992; 5(2):38-44.

    23. Caplan LR, Stroke: A Clinical Approach (2nd Edition).
      Butterworth-Heinemann 1993:193-514.

    24. Chubbuck JD, Wheelchair with Aerobic Attachment. U.S. Patent
      No. 6,196,565 B1, 2001.

    25. Cooper BC and Store TW, Exercise Testing and Interpretation: A
      Practical Approach. Cambridge 2001: 15-92.

    26. Cooper R and Boninger ML, Walking on Your Hands. PN/Paraplegia
      News 1999; March:12-16.

    27. Cornell C, Self-propelling Wheelchairs: The Effects on Spasticity
      in Hemiplegic Patients. Physiother Theory Pract 1991; 7:13-21.

    28. Eng JJ, Dawson AS and Chu KS, Submaximal Exercise in Persons
      with Stroke:Test-retest Reliability and Concurrent Validity
      with Maximal Oxygen Consumption. Arch Phys Med Rehabil 2004; 85:
      113-118.

    29. Engel P and Seeliger K, Technological and Physiological
      Characteristics of a Newly Developed Handlever Drive System.
      J of Rehabilitation Research and Development 1986; 23(4):37-41.

    30. Frankin BA, Normal Cardiorespiratory Responses to Acute
      Aerobic Exercise. ACSM’s Resource Manual for Guidelines for
      Exercise Testing and Prescription (4th Edition). Philadelphia:
      Lippincott Willams and Wilkins 2001:141-149.

    31. Gellman H, Sie I and Waters RL, Late Complications of The
      weight-bearing Upper Extremity in The Paraplegic Patient.
      Clin Orthop Rel Res 1988; 233:132-135.

    32. Gitlin LN, Luborsky MR and Schemm RL, Emerging Concerns of
      Older Stroke Patients about Assistive Device Use. The Gerontologist
      1998; 38(2):169-180.

    33. Glaser RM, Petrofsky JS and DuFour HR, Wheelchair and Drive
      system. U.S. Patent No. 4,523,769, 1985.

    34. Glaser RM, Sawka MN, Brune MF and Wilde SW, Physiological
      Responses to Maximal Effect Wheelchair and Arm Crank Ergometry.
      J Appl Physiol 1980; 48: 1060-1064.

    35. Glaser RM, Sawka MN, Laubach LL and Suryaprasad AG,
      Metabolic and Cardiopulmonary Responses to Wheelchair and
      Bicycle Ergometry. J Appl Physiol 1979; 46:1066-1070.

    36. Goosey VL, Campbell IG and Fowler NE, Effect of Push Frequency
      on the Economy of Wheelchair Racers. Med Sci Sports Exerc 2000;
      32:174-181.

    37. Goosey VL and Kirk JH, Effect of Push Frequency and Strategy
      Variations on Economy and Perceived Exertion during Wheelchair
      Propulsion. Eur J Appl Physiol 2003; 90:154-158.

    38. Hass U, Persson J and Brodin H, Assessment of Rehabilitation
      Technologiesin Stroke: Outcomes and Costs. Int J Technol 1995; 11:
      245-261.

    39. Hintzy F and Tordi N, Mechanical Efficiency during Hand-rim
      Wheelchair Propulsion:Effects of Base-line Subtraction and
      Power Output. Clinical Biomechanics 2004; 19:343-349.

    40. James KV, Leg-propelled Wheelchair. U.S. Patent No. 0,101,054 A1,
      2002.

    41. Kaufman SR, Stroke Rehabilitation and the Negotiation of
      Identity. New York, Qualitative Gerontology 1988:82-103.

    42. Kirby RL, Ethans KD and Duggan RE,  Wheelchair Propulsion:
      Descriptive Comparison of Hemiplegic and Two-Hand Patterns during
      Selected Activities. Am J Phys Med Rehabil 1999; 78(2):131-135.

    43. Lupton D and Seymour W, Technology, Selfhood and Physical
      Disability. Social Science and Medicine 2000; 50:1851-1862.

    44. Macko RF, DeSouza CA and Tretter LD, Treadmill Aerobic
      Exercise Training Reduces the Energy Expenditure and
      Cardiovascular Demands of Hemiparetic Gait in Chronic Stroke
      Patients. A Preliminary Report. Stroke 1997; 28:326-330.

    45. Mumma CM, Perceived Losses Following Stroke. Rehabilitation
      Nursing 2000; 25(5):192-195.

    46. Nichols PJR, Normal PA and Ennis JR, Wheelchair User’s
      Shoulder? Shoulder Pain in Patients with Spinal Cord Injuries.
      Scand J Rehabil Med 1979; 11-29.

    47. O'Sullivan SB and Schmitz TJ, Physical Rehabilitation
      Assessment and Treatment (3rd Edition). Philadelphia, Stroke
      1995:327-360.

    48. Palmer ML, Toms JE, Edelstein JE, Croteau C and Hammer L,
      Manual for Functional Treaning (3rd Edition). Philadelphia:
      Wheelchairs, Assistive Devices, and Home Modifications 1992:
      109-131.

    49. Pomeroy VM, Mickelborough J, Hill E, Rodgers P, Giakas G and
      Barrett JA, A Hypothesis Self-propulsion in A Wheelchair Early
      After Stroke Might Not Be Harmful. Clin Rehabil 2003; 17:
      174-180.

    50. Roth EJ, Heart Disease in Patients with Stroke: Incidence,
      Impact, and Implications for Rehabilitation. Part I: Classification
      and Prevalence. Arch Phys Med Rehabil 1993; 74:752-760.

    51. Rozendaal LA and Veeger HEJ, Force Direction in Manual
      Wheelchair Propulsion: Balance between Effect and Cost. Clinical
      Biomechanics Sup 2000; 15 (1):S39-41.

    52. Rush KL and Ouellet LL, Mobility Aids and The Elderly Client.
      J of Gerontological Nursing 1997; 23(1):7-15.

    53. Ryan AS, Dobrovolny L, Silver K, Smith GV and Macko RF,
      Cardiovascular Fitness after Stroke: Role of Muscle Mass and
      Gait Deficit Severity. J Stroke Cerebrovasc Dis 2000; 9:185-191.

    54. Shephard RJ, Fitness in Special Populations. Champaign:
      Biomechanical Factors, Wheelchair Design, and Injury Prevention
      1990:173-199.

    55. Sie IH, Waters RL, Adkins RH and Gellman H, Upper Extremity Pain
      in The Postrehabilitation Spinal Cord Injured Patient. Arch Phys
      Med Rehabil 1992; 73: 44-48.

    56. Spaepen AJ, Vanlandewijck YC and Lysens RJ, Relationship between
      Energy Expenditure and Muscular Activity Patterns in Hand-rim
      Wheelchair Propulsion. International J of Industrial Ergonomics
      1996; 17:163-173.

    57. Stein RB, Roetenberg D, Chong SL, A Wheelchair Modified
      for Leg Propulsion Using Voluntary Activity or Electrical
      Stimulation. Medical Engineering and Physics 2003;25:11-19.

    58. Stein RB, Su Ling C, James KB, Bell GJ, Improved Efficiency with A
      Wheelchair Propelled by the Legs Using Voluntary Activity or Electric
      Stimulation. Arch Phys Med Rehabil 2001;82:1198-1203.

    59. Teixeira-Salmela LF, Olney SJ, Nadeau S and Brouwer V, Muscle
      Strengthening and Physical Conditioning to Reduce Impairment and
      Disability in Chronic Stroke Survivors. Arch Phys Med Rehabil 1999;
      80:1211-1218.

    60. Vanlandwilck YC, Daly DJ, Theisen DM, Field Test Evaluation of
      Aerobic, Anaerobic and Wheelchair Basketball Skill Performances.
      Int L Sports Med 1999; 20:548-554.

    61. Veeger HEJ, Woude LHV and Rozendaal RH, Load on The Upper
      Extremity in Manual Wheelchair Propulsion. J of Electromygraphy
      and Kinesiology 1992;1(4): 270-280.

    62. Veeger HEJ, Rozendaal LA and van der Helm FCT, Load on The
      Shoulder in Low Intensity Wheelchair Propulsion.
      Clinical Biomechanics 2002; 17:211-218.

    63. ven der Woude LHV, Veeger HEJ, Dallmeijer AJ, Janssen TWJ
      and Rozendaal LA, Biomechanics and Physiology in Active Manual
      Wheelchair Propulsion. Med Engineering and Physics 2001; 23:
      713-733.

    64. ven der Woude LHV, Hendrich KM, Veeger HEJ, van Ingen Schenau
      GJ, Rozendal RH, de Groot G and Hollander AP, Manual Wheelchair
      Propulsion: Effects of Power Output on Physiology and
      Technique. Med Sci Sports Exerc 1988; 20(1):70-78.

    65. Webster JS, Cottam G and Gouvier WD, Wheelchair
      Obstacle Course Performance in Right Cerebral Vascular Accident
      Victims. J Clin Exp Neuropsychol 1989; 11:295-310.

    66. Williams and Wilkins, ACSM’s guidelines for exercise testing and
      prescription. American College of Sports Medicine. PA. 2000.

    下載圖示 校內:立即公開
    校外:2005-08-04公開
    QR CODE