簡易檢索 / 詳目顯示

研究生: 曾威傑
Tseng, Wei-Chieh
論文名稱: 高成碳性材料-聚芳基乙炔之交聯熱性質分析與條件研究
Curing Conditions of Polyarylacetylene Prepolymers to Obtain Thermally Resistant Materials
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 67
中文關鍵詞: 硬化熱性質聚芳基乙炔
外文關鍵詞: Curing Conditions, Polyarylacetylene (PAA), Thermally resistant, Diethynylbenzene
相關次數: 點閱:112下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 儘管高度交聯的聚芳基乙炔 (Polyarylacetylene, PAAs) 樹脂為一
    高耐熱性質材料,其硬化 (curing) 條件並未被詳細的探討,因此本研究著重於探討聚芳基乙炔之硬化條件期望不僅可以得到高殘碳率之聚芳基乙炔樹脂,亦可避免在製程中所可能發生的危險。本研究使用1,4-Diethynylbenzene (1,4-DEB) 單體藉由觸媒法 (C20、C25、C30)及熱聚合法 (T48) 合成了一系列的PAA 預聚物;分析動態(dynamic) 微差掃瞄熱卡計 (Differential Scanning Calorimeter, DSC)曲線表明:PAA 預聚物C20、C25、C30 及T48 自120oC 起開始交聯反應,最大反應溫度為210oC,反應結束於300oC;階段性恆溫 (120oC、160oC、200oC、250oC、300oC,各恆溫一小時) DSC 曲線表明,PAA預聚物主要的反應溫度發生在160oC、200oC 及250oC,其反應超過了87%的總反應熱;使用此一階段升溫硬化條件所得熱性質最佳之PAA 樹脂C30 之殘碳率 (800 oC) 、熱裂解溫度 (10%重量損失) 及玻璃轉移溫度分別為86%、686 oC 及125oC。研究結果顯示高耐熱性質的PAA 樹脂可採取觸媒法合成預聚物並使用階段性升溫的硬化製程所得。

    Although cross-linked polyarylacetylenes (PAAs) are highly thermal resistant material, detailed curing behaviors of PAA prepolymers have not been investigated. We dedicated on the curing behaviors to determine the proper conditions that prevent explosion hazard during curing process and render high char yield in cured PAA resins. Prepolymers of PAA were synthesized from 1,4-diethynylbenzene (1,4-DEB) using nickel as catalyst (C20, C25, and C30) or by direct thermal polymerization (T48). Dynamic and isothermal differential scanning calorimetric (DSC) measurements were employed to investigate the curing conditions of the
    prepolymers. Dynamic DSC study reveals that exothermic heat starts at about 120oC, reaches to a maximum at 210oC, and ends around 300oC. Moreover, step isothermal DSC investigation (120, 160, 200, 250, 300oC; one hour for each temperature) shows that the major curing temperature
    occurs at 160oC, 200oC and 250oC, with more than 87% of the acetylene groups reacted. Using this step curing conditions, very high thermal resistance is realized on C30, with thermal decomposition temperature (at 10% weight loss), char yield (at 800oC) and glass transition temperature being 686oC, 86% and 125 oC, respectively. Current results indicate that highly thermal resistant PAA resins are obtainable using step curing of PAA prepolymers synthesized by Ni-catalyzed reaction.

    目錄 中文摘要......................................................................................I 英文摘要.....................................................................................II 目錄.............................................................................................IV 流程目錄..................................................................................VIII 表目錄.........................................................................................IX 圖目錄..........................................................................................X 第一章 緒論.................................................................................1 1-1 前言.....................................................................................................1 第二章 基礎理論與文獻回顧.....................................................3 2-1碳/碳複合材料的發展..........................................................................3 2-1-1 碳/碳複合材料簡介…………………………………………….3 2-1-2 碳/碳複合材料的製造方法……………………………..……...4 2-1-3 碳/碳複合材料的性能與用途.....................................................6 2-1-4 碳/碳複合材料基材之選擇.........................................................7 2-2高溫複合材料基體樹脂聚芳基乙炔 (PAA) 簡介…………………9 2-2-1 聚芳基乙炔 (PAA)之優點……………….…………………….9 2-2-2 單體分類......................................................................................9 2-2-3單體合成途徑………………………………….………………12 2-2-4 芳基乙炔預聚物........................................................................14 2-2-5 末端乙炔基聚合反應................................................................14 2-3高溫複合材料基體樹脂聚芳基乙炔 (PAA) 之相關文獻………...17 2-3-1 PAA預聚物以及樹脂相關文獻…………………………….....17 2-3-2 PAA與碳纖維界面性能之相關研究………………………….18 2-4研究動機.............................................................................................20 第三章 實驗內容......................................................................21 3-1 實驗裝置與設備...............................................................................21 3-2 鑑定及分析儀器...............................................................................23 3-3 實驗藥品……………………………………………………………26 3-4 實驗步驟…………………………………………………………...27 3-4-1 單體合成………………………………………………………29 3-4-2 PAA預聚物觸媒法C系列之合成............................................30 3-4-3 PAA預聚物熱聚合法T系列之合成........................................31 3-4-4 PAA硬化樹脂之製作................................................................32 第四章 結果與討論………………………………………………..38 4-1 PAA預聚物之合成結果與討論.......................................................38 4-2 預聚物之熱分析 --- 動態分析 (dynamic)………………………45 4-3 預聚物之熱分析 --- 恆溫分析 (isothermal)…………………….50 4-4 PAA硬化樹脂之紅外光譜 (FT-IR spectra)鑑定………………….55 4-5 PAA硬化樹脂之熱穩定性分析……………………………………58 第五章 結論.......................................................................................62 參考文獻...............................................................................................64 自述……………………………………………………………………………..67 流程目錄 Scheme 1 1,4-Diethynylbenzene之合成流程..........................................27 Scheme 2 PAA預聚物C20~C35及T48、T52之合成流程………………28 Scheme 3 PAA硬化樹脂製作流程…………………………………….28 表目錄 Table 2-1碳/碳複合材料的優缺點...........................................................7 Table 2-2 各種碳/碳複合材料基材之殘碳率比較..................................8 Table 4-1 Polymerization conditions and results of the prepolymers…...44 Table 4-2 Dynamic differential scanning calorimetric results of the prepolymers…………………………………………………..49 Table 4-3 Isothermal differential scanning calorimetric results of the prepolymers…………………………………………………..54 Table 4-4 Thermal decomposition temperatures, residual weights and glass transition temperature of cured resins……………..…...61 圖目錄 Fig. 2-1 不同種類的基材碳化成形方式.................................................5 Fig. 2-2 不同測試溫度下碳/碳複合材料與其他材料撓曲強力之比較.6 Fig. 2-3單乙炔基芳烴單體...........................................................................10 Fig. 2-4二乙炔基芳烴單體....................................................................10 Fig. 2-5多乙炔基芳烴單體....................................................................11 Fig. 2-6內乙炔基芳烴單體....................................................................11 Fig. 2-7芳烴醯化法合成PAA單體示意圖...........................................12 Fig. 2-8三甲基矽乙炔法合成PAA單體示意圖....................................13 Fig. 2-9二乙烯基苯法合成PAA單體示意圖.........................................14 Fig. 2-10末端乙炔基之環三聚機制.......................................................15 Fig. 2-11末端乙炔基之熱聚合機制……………………………………16 Fig. 3-1 1H-NMR spectrum of (2)……………………………………….33 Fig. 3-2 1H-NMR spectrum of (3)……………………………………….33 Fig. 3-3 1H-NMR spectrum of C20……………………………………...34 Fig. 3-4 1H-NMR spectrum of C25………………………………………34 Fig. 3-5 1H-NMR spectrum of C30……………………………………….35 Fig. 3-6 1H-NMR spectrum of T48……………………………………….35 Fig. 3-7 FT-IR spectrum of C20…………………………………………..36 Fig. 3-8 FT-IR spectrum of C25…………………………………………..36 Fig. 3-9 FT-IR spectrum of C30…………………………………………..37 Fig. 3-10 FT-IR spectrum of T48…………………………………………37 Fig. 4-1 The GPC diagram of C20………………………………………..41 Fig. 4-2 The GPC diagram of C25………………………………………..41 Fig. 4-3 The GPC diagram of C30………………………………………..42 Fig. 4-4 The GPC diagram of T48………………………………………..42 Fig. 4-5 FT-IR spectra of prepolymers C30 and T48……………......……43 Fig. 4-6 1H NMR spectra of prepolymers C30 and T48……………….....43 Fig. 4-7 Dynamic DSC curves of monomer 1,4-DEB; heating rate: 10oC/min………………………………………………………...47 Fig.4-8 Dynamic DSC curves for prepolymers C20; heating rate: 10oC/min…………………………………………………………47 Fig.4-9 Dynamic DSC curves for prepolymers C25; heating rate: 10oC/min…………………………………………………………48 Fig.4-10 Dynamic DSC curves for prepolymers C30; heating rate: 10oC/min…………………………………………………………..48 Fig.4-11 Dynamic DSC curves for prepolymers T48; heating rate: 10oC/min…………………………………………………………49 Fig.4-12 Isothermal DSC curve for prepolymers: C20; heating rate is 100oC/min and holds for one hour at each temperature……......52 Fig.4-13 Isothermal DSC curve for prepolymers: C25; heating rate is 100oC/min and holds for one hour at each temperature……......52 Fig.4-14 Isothermal DSC curve for prepolymers: C30; heating rate is 100oC/min and holds for one hour at each temperature……….53 Fig.4-15 Isothermal DSC curve for prepolymers: T48; heating rate is 100oC/min and holds for one hour at each temperature……….53 Fig. 4-16 Infrared spectral variations of prepolymers C20 during step isothermal curing………………………………………………..56 Fig. 4-17 Infrared spectral variations of prepolymers C25 during step isothermal curing………………………………………………..56 Fig. 4-18 Infrared spectral variations of prepolymers C30 during step isothermal curing……………………………………………......57 Fig. 4-19 Infrared spectral variations of prepolymers T48 during step isothermal curing………………………………………………..57 Fig. 4-20 TGA thermograms of cured resins from C20, C25, C30, and T48; heating rate: 20 oC/min under nitrogen atmosphere……………..60 Fig. 4-21 TMA thermograms of cured resins from C20, C25, C30 and T48; heating rate: 5 oC/min under argon atmosphere…………………60

    [1] 許明發,”碳、碳纖維、碳/複合材料之加工技術及應用”,滄海書局,1997年。
    [2] Savage. G. Carbon-Carbon Composites, Chapman and Hall, 1993.
    [3] Zaldivar R, Rellick G, Yang J. Processing effects on the mechanical behavior of polyarylacetylene-derived carbon/carbon composites. SAMPE J, 27, 29-36(1991).
    [4] Hurwitz F. Ethynylated aromatics as high temperature matrix resins. SAMPE J,23,49-53(1987).
    [5] Cessna L. Thermosetting composition containing poly(arylacetylenes) United States Patent , 3,882,073(1975).
    [6] Njuguna J, Pielichowski K, Desai S. Nanofiller-reinforced polymer nanocomposites. Polym Adv Technol ,19,947-959(2007).
    [7] Wang M, Zhao T. Polyarylacetylene blends with improved processability and high thermal stability. J Appl Polym Sci, 105,2939-2946(2007).
    [8] 張德雄,張衍,”高溫複合材料基體樹脂聚芳基乙炔綜述”,固體火箭技術,24,53-59( 2001)。
    [9] Bilow N, Landis A, Austin W, Woolley D. Arylacetylenes as high char forming matrix resins. SAMPE J ,18,19-24(1982).
    [10] Carosino L E, Herak D C. Synthesis of Diethynylbenzene. United States Patent, 4,997,991(1991).
    [11] Hay AS. Preparation of m- and p-diethynylbenzenes. J Org Chem, 25,637-638(1960).
    [12] Katzman H, Mallon J, Barry T. Polyarylacetylene-matrix composites for solid rocket motor components. J Adv Mater,26,21-27(1994).
    [13] Chalk A, Gilbert A. A new simple synthesis of soluble high molecular weight polyphenylenes by the cotrimerization of mono- and bifunctional terminal acetylenes. J Polym Sci Part A: Polym Chem,10,2033-2043(1972).
    [14] Jabloner H. Poly(arylacetylenes) and thermoset resins therefrom. United States Patent, 4,097,460(1978).
    [15] 曹建華,丁學文,莊元其,焦揚聲, ” 芳基乙炔聚合物的研究”,材料導報,15,64-66(2001)。
    [16] Kovar R, Ehlers G, Arnold F. Thermosetting acetylene-terminated polyphenylquinoxalines. J Polym Sci Part A: Polym Chem,15, 1081-1095(1977).
    [17] Wang M, Yang M, Zhao T, Pei J. Acetylene-grafted resins derived from phenolics via azo coupling reaction. Eur Polym J, 44,842-848(2008).
    [18] 丁學文,”新型耐熱材料芳基乙炔聚合物的性能”,合成樹脂及塑料,21,50(2004)。
    [19] 賈玲, ”碳纖維表面等離子接枝及對碳纖維/複合材料ILSS的影響”,複合材料學報,21,4( 2004)。
    [20] 黃玉東, ”碳纖維/聚芳基乙炔複合材料介面特性的原子力顯微鏡研究”,複合材料學報, 22,6( 2005)。

    下載圖示 校內:2014-07-30公開
    校外:2014-07-30公開
    QR CODE