| 研究生: |
李世強 Li, Shyh-Chyang |
|---|---|
| 論文名稱: |
應用於微刺激器之無線雙向傳輸電路之積體電路實現 VLSI Implementation of Wireless Bi-directional Communication Circuits for Micro-stimulator |
| 指導教授: |
陳家進
Chen, Jia-Jin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 雙向傳輸 、無線 、微刺激器 、積體電路 |
| 外文關鍵詞: | Micro-Stimulator, VLSI, Bi-Directional, Wireless |
| 相關次數: | 點閱:83 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多植入式生物微系統被廣泛的應用在神經義肢與相關的臨床研究上。對於一個植入式生物微系統而言,電源是設計上最主要的考量。由於使用壽限的問題,電池在植入式系統應用中不是最佳的選擇。近年來,植入式生物微系統的設計是利用電磁耦合方式,將電源與資料以無線傳輸方式耦合到系統內,以提供系統正常操作所需。另一方面,具生理訊號擷取與傳送的雙向傳輸功能也是此領域的發展的重點。本研究目的是以超大型積體電路(VLSI)之設計概念,驗證具有無線雙向傳輸功能的生物微系統之體內單元電路,並呈現所有的電路模擬結果。
整個植入式系統包含內部射頻前端電路、控制電路、刺激器以及資料傳送電路。電路操作是由體內電路接收一個包含電源及數位資料、且由外部發射的2MHz振幅調變訊號。此訊號經由內部電壓整流與穩壓電路產生一個穩定的直流電壓以提供整個內部系統應用,同時數位資料也經由解調器萃取以執行神經肌肉電刺激。此外,系統也將擷取生理訊號以做為資料傳輸應用。本研究使用Hspice電路模擬軟體,並依據台積電(TSMC) 0.25um CMOS製程之電路設計規則來驗證整個植入式系統的功能性區塊。模擬結果顯示RF前端電路能提供一個穩定的2.5V 直流電壓輸出,並且準確的解調出數位資料。同時訊號處理電路部分,前置放大器能提供生理訊號穩定的放大倍率(40~60 dB)。濾波器電路採用ladder type之架構,設計一頻帶為250Hz到5KHZ之帶通濾波器,模擬結果顯示其適合應用於生理訊號的處理。最後,A/D轉換器為一個8-bit解析度SAR(successive approximation register)架構的A/D轉換器,模擬結果也顯示其能提供一正確的類比/數位資料轉換。而本研究的所有電路模擬結果也將做為未來發展植入式生物微系統的基礎。
Various implantable bio-microsystems have been designed for the neural prostheses and other clinical studies. For the implantable bio-microsystem, power is one of the major concerns in the system design. Due to the lifetime limitation, battery is not the optimal choice in the implanted devices. In recent years, electromagnetic propagation through inductive coupling links has been commonly used to deliver power and information into these implantable bio-microssytems. Another issue is the outward transmission of sensing data, which requires an internal data transmission system with the power acquired from the external controller. The aim of this study is to investigate the functional blocks needed for a wireless bi-directional transmission micro-stimulator and present their simulation results.
This implantable device includes internal RF front-end circuit, control circuit, stimulator, and on-chip transmitter. The operation of this system is to receive an AM modulated 2MHz signal generated by external circuits. This signal includes the power and data necessary for the whole internal circuits. Through the internal circuits, a stable DC voltage and digital data can be extracted for neuromuscular stimulation. Besides, the system can acquire the biological sensing signal for on-chip transmission.
In this study, most of the functional blocks for the implantable device can be verified by using Hspice according to the design rules of TSMC 0.25 um CMOS process. Our simulating results show that the RF front-end circuits can provide a stable 2.5V DC voltage and extract digital data accurately. Meanwhile, in the signal process circuits, the preamplifier can provide a stable gain for bio-signals (about 40dB to 60dB). The bandpass filter with bandwidth between 250Hz to 5KHz filter circuit is designed with ladder type approach. Finally, an accurate A/D data converter with 8-bitresoultion of successive approximation register (SAR) has been verified too. All the simulating results can be a base for future fabrication of implantable devices.
[1] L. A. Benton, L. L. Baker et al., Functional Electrical Stimulation – A Practical Clinical Guide, 2nd edition, Rancho Rehabilitation Engineering Program, Rancho Los Amigos Medical Center, 1981.
[2] F. G. Weiss, “Implications of Silicon Monolithic RFICs for Medical Instrumentation and Telemetry”, Silicon Monolithic Integrated Circuits in RF Systems, 1998. Digest of Papers. 1998 Topical Meeting on, 1998, Page(s): 195 -204
[3] A. Deiss, D. Pfaff, Q. Huang, ”A 200-MHz sub-mA RF front end for wireless hearing aid applications,” IEEE Journal of Solid-State Circuits, vol.35, no.7, pp. 977-986, July 2000
[4] A. Djemouai, M. Sawan, M. Slamani, ”An efficient RF power transfer and bidirectional data transmission to implantable electronic devices,” Circuits and Systems, 1999. ISCAS '99. Proceedings of the 1999 IEEE International Symposium on , Volume: 2 , pp. 259 –262, 1999
[5] J. A. Von Arx, K. Najafi, “A wireless single-chip telemetry-powered neural stimulation system,” IEEE Journal of Solid-State Circuits Conference, Papers. ISSCC. pp. 214-215, 1999
[6] M. Nardin, K. Najafi, ”A Multichannel Neuromuscular Microstimulator With Bi-directional Telemetry,” Solid-State Sensors and Actuators, and Eurosensors IX. Transducers '95. The 8th International Conference on , Vol. 1, pp 59 –62,1995
[7] M. Sawan, F. Duval, S. Pourmehdi, and J. Mouine, “A new multichannel bladder stimulator,” IEEE Symposium on Computer-Based Medical Systems, pp. 190-196, 1990.
[8] M. A. Sawan, K. Arabi, ”Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation,“ IEEE Transactions on Rehabilitation Engineering, vol.7, no.2, pp.204-214, June 1999
[9] B. Ziaie, M.D. Nardin, A.R. Coghlan, K. Najafi, ”A single-channel implantable microstimulator for functional neuromuscular stimulation,” IEEE Transactions on Biomedical Engineering, vol. 44, no.10, pp.909-920, Oct. 1997
[10] T. Desel, T. Reichel, S. Rudischhauser, H. Hauer, ”A CMOS nine channel ECG measurement IC,” 2nd International Conference on ASIC, pp. 115-118,1996
[11] H, Yu, K. Najafi, “Curcuitry for a wireless microsystem for neural recording microprobes,” Center for Wireless Integrated MmicroSystems (WIMS), The University of Michigan, MI, USA, June 2000
[12] T. Akin, K. Najafi, R. M. Bradley, “A wireless implantable multichannel digital neural recording system for a micromachined sieve electrode,” IEEE J. Solid-State Circuits, vol. 33, pp.109 -118, Jan.1998
[13] M. Oberle, Q. Huang, ”A 0.5-mW passive telemetry IC for biomedical applications,” IEEE Journal of Solid-State Circuits, vol.33, no.7, pp. 937-946, July 1998
[14] R. Martins, S. Selberherr, F.A. Vaz, ”A CMOS IC for portable EEG acquisition systems,” IEEE Transactions on Instrumentation and Measurement, vol.47, no.5, pp.1191-1196, Oct. 1998
[15] H. J. Song, D.R. Allee, K.T. Speed, ”Single chip system for bio-data acquisition, digitization and telemetry,” IEEE International Symposium on Circuits and Systems, vol.3, pp. 1848-1851, 1997
[16] G. E. Loeb, F.J.R Richmond, “BION Bionic neurons for functional and therapeutic electrical stimulation,” IEEE, Medicine and Biology Society Engineering, vol. 15, pp. 2305-2309,1998
[17] G. E. Loeb, F.J.R. Richmond; W.H Moore, R.A. Peck, “Design and fabrication of hermetic microelectronic implants,” Microtechnologies in Medicine and Biology, 1st Annual International, Conference On. pp. 455-459, 2000
[18] P. R. Troyk, I. E. Brown, W. H. Moore and G.E. Loeb, ”Development of BION technology for functional electrical stimulation: bi-directional telemetry,” A. E. Mann Institute for Biomedical Engineering, University of Southern California Los Angeles, *Pritzker Institute for Biomedical Engineering, Illinois Institute of Technology, Chicago.
[19] K. W Fernald, J. J Paulos, B. A. Stackhouse, R. A. Heaton, “A self-tuning digital telemetry IC for use in a microprocessor-based implantable instrument,” IEEE Journal of Solid-State Circuits, vol.27, no.12, pp. 1826-1832, Dec. 1992
[20] N. H. E. Weste and K. Eshraghian, Principle of CMOS VLSI Design. Addison Wesley, 1993.
[21] A. Harb, M. Sawan, Z. Jieyan, ”A wireless CMOS implantable receiver for neuromuscular microstimulators,” IEEE, WESCANEX 95. Communications, Power, and Computing. Conference Proceedings, vol.2, pp.383-385, 1995
[22] S. S. Bustos, J. S. Martinez, “ Design considerations for biomedical signal interfaces,” Design of Mixed-Mode Integrated Circuits and Applications, 1999. Third International Workshop on, pp. 187 –191, 1999
[23] A. Harb, M. Sawan, “New low-power low-voltage high-CMRR CMOS instrumentation amplifier”, Circuits and Systems, 1999. ISCAS '99. Proceedings of the 1999 IEEE International Symposium on, vol. 6, pp. 97-100, 1999
[24] A. Harb, M. Sawan, “Low-power CMOS implantable nerve signal analog processing circuit”, Electronics, Circuits and Systems, 2000. ICECS 2000. The 7th IEEE International Conference on, vol. 2, pp. 911-914, 2000
[25] A. Harb, Y. Hu, M. Sawan, “New CMOS instrumentation amplifier dedicated to very low-amplitude signal applications”, Electronics, Circuits and Systems, 1999. Proceedings of ICECS '99. The 6th IEEE International Conference on, vol.1, pp.517-520, 1999
[26] I. Gkotsis, G. Souliotis, I. Haritantis, “Instrumentation amplifier based analogue interface”, Electronics, Circuits and Systems, 1998 IEEE International Conference on, vol.1, pp. 317-320, 1998
[27] H. Huang; S. Karthikeyan, Lee, E.K.F. “A 1 V instrumentation amplifier”, Circuits and Systems, 2000. 42nd Midwest Symposium on, vol. 1, pp. 170-173, 2000
[28] M. Di Ciano, R. Tangorra, C. Marzocca, “Designing a low cost, low noise programmable gain instrumentation amplifier”, Electrotechnical Conference, 1996. MELECON '96, 8th Mediterranean, vol. 3, pp. 1263-1266,1996
[29] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
[30] R. Schaumann and M. E. V. Valkenburg, Design of Analog Filters. New York: Oxford, 2001.
[31] W. K. Cheng, The Circuits and Filters Handbook. CRC Press, 1995.
[32] A. Moscovici, High Speed A/D Converters Understanding Data Converters Through SPICE. Kluwer Academic Publishers, 2001.
[33] Roubik Gregorian:“Introduction to CMOS OP-AMPs and comparators,” Wiley-Interscience Publication, 1999.
[34] H. J. Schouwenaers, D. W. J. Greeneveld, and H. A. H. Tremeer:“A low-power stereo 16-bit CMOS D/A converter for Digital Audio,” IEEE J. Solid-State Circuits, vol.23, no.6, pp.1290-1297, December 1988.