簡易檢索 / 詳目顯示

研究生: 陳昱辰
Chen, Yu-Chen
論文名稱: 由二硒化鎢為基底的憶阻元件之電性特質和突觸反應
Electrical Characteristics and Synaptic Response of WSe2-Based Memristive Devices
指導教授: 路克史密斯
Smith, Luke
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 79
中文關鍵詞: 二硒化鎢憶阻器憶阻電晶體神經突觸神經型態計算原子層厚度
外文關鍵詞: tungsten diselenide, memristor, memtransistor, neural synapse, neuromorphic computing, atomic layer thickness
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人工智慧的快速發展,電腦運算的速度和能耗逐漸受到重視。然而,目前的科技發展仍受限於傳統的馮諾伊曼架構,難以滿足日益增長的計算需求。近年來,人工智慧與機器學習的討論中,類人腦的神經型態運算成為了一個熱門的研究方向。這種計算架構受到生物神經系統的啟發,通過模擬神經元和突觸的行為,實現高效、低功耗的運算。其中,憶阻元件因其獨特的電阻值可變特性,在構建人工神經突觸方面展現出了巨大的潛力。本文將探討如何利用以二硒化鎢WSe2為基底的憶阻元件實現模擬神經突觸的各個現象。

    在這個碩士論文中,由於現今憶阻器或憶阻電晶體在幾個原子層厚度的研究十分稀少,因此我們致力於研究原子級厚度的元件,研究探討其在憶阻器和憶阻電晶體這個領域的表現,我們以WSe2為基底,製作了三種不同的結構:

    三層WSe2(memtransistor A)、人工堆疊WSe2/1L-WOx/WSe2(memtransistor B)和最上層氧化1L-WOx/WSe2(memtransistor C)為了去完整的了解元件表面和介面捕獲(trapping)的行為以及WOx在元件中扮演的角色和工作機制。使用施加閘極電壓脈衝的方式去模擬前突觸和後突觸的表現,而我們也著重在三層WSe2的相關實驗,成功量測到了雙脈衝增益 (PPF)、成對脈衝抑制 (PPD)、增抑迴圈 (P/D cycle),藉由這些數據得到了高達821的電導比和低至3.8奈焦耳的能耗;在人工堆疊結構的元件上,我們也量測到脈衝時序依賴可塑性(SDDP) 等的可塑性現象。

    這篇碩士論文為原子層厚度的WSe2憶阻元件提供了初步的研究結果,揭示了極少層數WSe2在憶阻器應用中的潛力,為未來高效、低功耗神經型態計算系統的開發奠定了基礎。未來的研究可以進一步改變脈衝量測時的參數,使其產生更低的能耗。

    With the rapid development of artificial intelligence, the speed and energy consumption of computing has received much attention. However, current technologies are limited by the traditional von Neumann architecture, making it difficult to meet the growing computational requirements. In recent years, human-brain-like neuromorphic computing has been presented as a possible solution and has become a hot research direction in the discussion of artificial intelligence and machine learning. This computing architecture is inspired by biological neural systems and achieves efficient and low-power computing by simulating the behavior of neurons and synapses. Among neuromorphic computing, memristive devices have shown great potential in constructing artificial neural synapses due to their unique variable resistance characteristics. This thesis will explore how memristive devices based on tungsten diselenide (WSe2) simulate various of neural synaptic plasticities.
    There are very few studies on memristors or memtransistors for atomic layer thickness WSe2, therefore in this thesis we aim to fill this gap by devices studying ultrathin devices and exploring their performance in the field of memristors and memtransistors. We used WSe2 as the material and fabricated three different forms of structures: trilayer WSe2 (memtransistor A), artificial stacked WSe2/1L-WOx/WSe2 (memtransistor B), and top-layer oxidized 1L-WOx/WSe2 (memtransistor C) to further understand the surface or interface trapping behavior and the role of WOx in the working mechanism of devices. By applying gate voltage pulses, we simulated the behavior between pre-synapses and post-synapses. We focused on the experiments related to trilayer WSe2 and successfully measured paired-pulse facilitation (PPF), paired-pulse depression (PPD), and potentiation-depression cycles (P/D cycles), achieving a high conductance ratio of up to 821 and low energy consumption of 3.8 nJ. In the devices with artificial stacked structures, we also observed plasticity such as spike-timing-dependent plasticity (STDP).
    This master's thesis provides preliminary research results for WSe2 memristive devices with atomic layer thickness, revealing the potential of ultra-thin WSe2 in memristor applications and laying the foundation for the development of future efficient and low-power neuromorphic computing systems. Future research can further optimize the pulse measurement parameters to achieve even lower energy consumption.

    摘要 i Abstract ii 誌謝 iv 目錄 vi 表目錄 ix 圖目錄 xii Chapter 1 Introduction 1 Chapter 2 Background and Theory 3 2.1 Why Choose 2D Materials 3 2.2 Transition Metal Dichalcogenides (TMDCs) and WSe2 3 2.2.1 Overview of TMDCs 3 2.2.2 WSe2 Properties 6 2.2.3 WSe2 as memristor 7 2.3 Memristor and Memtransistor 7 2.3.1 Difference between memristor and memtransistor device 7 2.3.2 Synaptic Characteristics 8 2.3.2.1 Synaptic Plasticity 8 2.3.3 Working Mechanisms of Synaptic Devices 12 2.4 Space Charge limit conductance (SCLC) model 14 2.5 Contact engineering in WSe2 devices 15 Chapter 3 Device fabrication 17 3.1.1 Exfoliation 17 3.1.2 Fabricating the Pick-Up Slide and Dry Transfer 18 3.1.2.1 Fabricating Pick-Up Slide 18 3.1.2.2 Pick Up process 19 3.1.3 Annealing 21 3.1.4 E-beam lithography, Metal evaporation 22 3.1.5 Metal Deposition and Etching 22 3.1.6 A2 Photoresist test 24 3.1.7 Oxygen Plasma 26 3.2.1 Device structure 27 3.2.1.1 Memtransistor A 27 3.2.1.2 Memtransistor B 27 3.2.1.3 Memtransistor C 29 3.3.1.1 LED WSe2 29 Chapter 4 Synaptic characteristic measurement result and literature review 32 4.1 The measurement setup 32 4.1.1 Basic electric characteristics measurement 32 4.1.2 Synaptic characteristic measurement 35 4.2 Experiment of Data 36 4.2.1 Id-Vd and Id-Vg 36 4.2.2 Synaptic Pulse Measurements 37 4.3 Literature review 54 Chapter 5 Conclusion and Future work 59 參考文獻 61

    [1] L. Chua et al. (1971) “Memristor-the missing circuit element,” IEEE Transactions on circuit theory, 18, 5, 507–519.
    [2] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams (2008) “The missing memristor found,” Nature, 453, 7191, 80–83.
    [3] Kelin J. Kuhn et al. Past, Present and Future: SiGe and CMOS Transistor Scaling (2010) ECS Trans. 33 3
    [4] Alexander A. Balandin et al. Superior Thermal Conductivity of Single-Layer Graphene (2008) Nano letters, 8(3), 902-907
    [5] Zhang, Y. J. et al. Electrically switchable chiral light-emitting transistor. (2014) Science, 344(6185), 725-728.
    [6] Hui Fang et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. (2012) Nano letters, 12(7), 3788-3792.
    [7] B. Radisavljevic et al. Single-layer MoS2 transistors. (2011) Nature nanotechnology, 6(3), 147-150.
    [8] Wei Liu et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. (2013) Nano letters, 13(5), 1983-1990.
    [9] Hema C. P. Movva et al. High-mobility holes in dual-gated WSe2 field-effect transistors. (2015) ACS nano, 9(10), 10402-10410.
    [10] Adrien Allain and Andras Kis Electron and hole mobilities in single-layer WSe2. (2014) ACS nano, 8(7), 7180-7185.
    [11] Miao Wang et al. Robust memristors based on layered two-dimensional materials. (2018) Nature Electronics, 1(2), 130-136.
    [12] Ruijing Ge et al. Atomristor: Nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. (2018) Nano letters, 18(1), 434-441.
    [13] Qing Hua Wang et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. (2012) Nature Nanotechnology 7, 699–712
    [14] Mingsheng Wu et al. Graphene-Like Two-Dimensional Materials. (2013) Chem. Rev. 113, 5, 3766–3798
    [15] Bum-Kyu Kim et al. Origins of genuine Ohmic van der Waals contact between indium and MoS2 (2021) npj 2D Materials and Applications 5 9
    [16] Duy le et al. (2015). Spin–orbit coupling in the band structure of monolayer WSe2. J. Phys.: Condens. Matter 27 182201
    [17] Emerging Photoluminescence in Monolayer MoS2
    [18] Do Muoi et al. (2019) Electronic properties of WS2 and WSe2 monolayers with biaxial strain: A first-principles study. Chemical Physics 519, 69-73; Hailong Zhou et al. (2015) Large Area Growth and Electrical Properties of p-Type WSe2 Atomic Layers. Nano Lett. 15, 1, 709-713
    [19] Hui Fang et al. (2012) High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. Nano Lett. 12, 7, 3788–3792; Wei Liu et al. (2013) Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe2 Field Effect Transistors. Nano Lett. 13, 5, 1983–1990
    [20] Pushpa Raj Pudasaini et al. High-performance multilayer WSe2 field-effect transistors with carrier type control. (2018) Nano Research 11, 722-730
    [21] Jordan Pack et al. (2023) Charge-transfer Contact to a High-Mobility Monolayer Semiconductor. arXiv:2310.19782
    [22] Xuwen xia et al. (2023). 2D-Material-Based Volatile and Nonvolatile Memristive Devices for Neuromorphic Computing. ACS Materials Letters, 5(6), 1109-1135
    [23] Maheswari Sivan et al. (2019) All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nature Communications, 10, 5201
    [24] Hui-Kai He et al. (2020) Multi-gate memristive synapses realized with the lateral heterostructure of 2D WSe2 and WO3. Nanoscale, 12, 380
    [25] Geonyeop Lee et al. (2021) Artificial Neuron and Synapse Devices Based on 2D Materials. Small, 17, 2100640
    [26] Shuiyuan Wang (2019). A MoS2/PTCDA Hybrid Heterojunction Synapse with Efficient Photoelectric Dual Modulation and Versatility. Advanced Materials 31(3) 1806227
    [27] Yuhan Shi et al. (2017). Synaptic Devices Based on Phase-Change Memory. Springer, Cham.
    [28] Feng Zhang et al. (2019). Electric-field induced structural transition in vertical MoTe2 - and Mo1–xWxTe2-based resistive memories. Nature Materials, 18(1), 55-61.
    [29] Erika Covi et al. (2022) Ferroelectric-based synapses and neurons for neuromorphic computing. Neuromorph. Comput. Eng. 2 012002
    [30] Yue Zhou et al. (2022) A Reconfigurable Two-WSe2-Transistor Synaptic Cell for Reinforcement Learning. Adv. Mater. 34, 2107754.
    [31] Ee Wah Lim and Razali Ismail (2015). Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics, 4(3), 586-613
    [32] Mi-Ran Park et al. (2000) Improved Low Resistance Contacts of Ni/Au and Pd/Au to p-Type GaN Using a Cryogenic Treatment. MRS Internet Journal of Nitride Semiconductor Research 5, 901-907; Zhenyu Yang et al. (2018) WSe2/GeSe heterojunction photodiode with giant gate tunability, Nano Energy, 49, 103-108
    [33] Ross JS et al., Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat Nanotechnol. 2014 Apr;9(4):268-72.
    [34] Britton W. H. Baugher et al., Optoelectronics devices based on electrically tunable p-n diode in monolayer dichalcogenide. Nature Nanotechnology 9, 262–267 (2014)
    [35] Tien Dat Ngo et al., Self-Aligned Top-Gate Structure in High-Performance 2D p-FETs via van der Waals Integration and Contact Spacer Doping. Nano Lett. 2023, 23, 23, 11345–11352
    [36] Mahito Yamamoto et al., Self-Limiting Layer-by-Layer Oxidation of Atomically Thin WSe2. Nano Lett. 2015, 15, 3, 2067–2073
    [37] Bilu Liu et al., High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions. ACS Nano 2016, 10, 5, 5153–5160
    [38] Shubhadeep Bhattacharjee et al. (2020) Emulating synaptic response in n‑ and p‑channel MoS2 transistors by utilizing charge trapping dynamics. Nature,10,12178
    [39] Ding et al. (2021) Reconfigurable 2D WSe2-Based Memtransistor for Mimicking Homosynaptic and Heterosynaptic Plasticity. Small, 17, 2103175
    [40] Shu-Ting Yang et al. (2024) Submicron Memtransistors Made from Monocrystalline Molybdenum Disulfide. ACS Nano, 18, 6936-6945
    [41] Discussion with Ya-Chi Huang, PhD student, MSE dept., Prof. Chen’s lab.
    [42] Woong Huh et al. (2018) Synaptic Barristor Based on Phase-Engineered 2D Heterostructures. Adv. Mater. 30, 1801447
    [43] Junwen Ren et al. (2022) Artificial Synapses Based on WSe2 Homojunction via Vacancy Migration. ACS Appl. Mater. Interface, 14, 18, 21141-21149
    [44] Jin Feng Leong et al (2023) N-P Reconfigurable Dual-Mode Memtransistors for Compact Bio-Inspired Feature Extractor with Inhibitory-Excitatory Spiking Capability., Adv. Funct. Mater. 33, 2302949
    [45] Tien Dat Ngo, et al. (2024), Opposite synaptic plasticity in oxidation-layer-controlled 2D materials-based memristors for mimicking heterosynaptic plasticity. NANOTODAY-D-24-00599
    [46] Vinod K. Sangwan et al. (2018) Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature, 554, 500-504.
    [47] Huawei Chen et al. (2019) Time-Tailoring van der Waals Heterostructures for Human Memory System Programming. Adv. Sci., 6, 1901072.
    [48] Siqi Yin et al. (2019) Emulation of Learning and Memory Behaviors by Memristor Based on Ag Migration on 2D MoS2 Surface. Phys. Status Solidi A, 216: 1900104
    [49] Rajesh Jana et al. (2024), Recent developments in the state-of-the-art optoelectronic synaptic devices based on 2D materials: a review. J. Mater. Chem. C. 12, 5299-5338

    無法下載圖示 校內:2029-07-31公開
    校外:2029-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE