| 研究生: |
洪健富 Hung, Chien-Fu |
|---|---|
| 論文名稱: |
雷射送線披覆之厚度研究 Study of the Laser Cladding with Wire Feeding Method |
| 指導教授: |
林震銘
Lin, Jehnming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 披覆 、送線 、厚度 、溫度 、固液介面 、雷射 |
| 外文關鍵詞: | thickness, cladding, liquid-solid interface, wire feeding, laser, temperature |
| 相關次數: | 點閱:82 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文目的為研究送線披覆圓管製程之厚度變化。針對單一披覆層,以數值分析及實驗方法進行分析。在數值分析方面,考慮披覆時整個時間歷程,包括金屬線融化、凝固和披覆層變化,運用連續、動量及能量方程式、自由表面計算、相變化模式及相關數值方法,以數值分析軟體FLUENT計算,分析不同的送線速度及圓管轉速下,厚度、溫度及固液介面的變化。在參數分析方面,計算不同雷射功率、送線速度及圓管轉速對披覆結果的影響並得到堆積、抽拉、波浪狀厚度變化三種結果的臨界速度條件。在披覆實驗方面,利用高速攝影機拍攝披覆情形,及使用光纖溫度感測器量測溫度,以得到不同圓管轉速下,厚度、寬度及溫度的變化,並和數值分析結果比較。本文研究的結果可作為多層披覆的快速原型製程基礎。
The object of this thesis is to study the thickness variation of the laser cladding with a wire feeding technique. The problem was solved by numerical simulation and experimental observation. In the numerical analysis, the transient analysis includes the melting and solidification of the wire cladding. Using the computational fluid dynamics (CFD) software, FLUENT, the problem of the continuity, momentum, energy equations, free boundary and phase change models was solved. The numerical results show the wire cladding thickness, maximum temperature and liquid-solid interface at various cladding speeds.
In order to investigate the effects of process parameters on the cladding profile, the influence of laser power, feeding rate and cladding velocity were also investigated. There are three basic mechanisms including the thickening, drawing and wavy thickness of the wire cladding profiles, which can be found in the numerical and experimental approaches. This research provides a clear insight of the mechanisms of the laser wire cladding and it is a fundamental study for the rapid prototype with multi-layer cladding technique in the future.
[1] Serope Kalpakjian, Manufacturing Engineering and Technology, Third Edition, Addison-Wesley, 1998,
[2] Serope Kalpakjian, Manufacturing Processes for Engineering Materials, Third Edition, Addison Wesley, 1997,
[3] Salminen A. S., Kujanpaa V. P. and Moisio T. J. I., Interactions between laser beam and filler Metal, Welding research supplement, 1996, pp9-13-s,
[4] Sun Z. and Salminen A. S., Current status of laser welding with wire Feed, Materials and Manufacturing Processes, 1997, Vol.12, No.5, pp759-777
[5] Sun Z. and Kuo M., Bridging the joint gap with wire feed laser welding, Journal of Materials Processing Technology, 1999, Vol.87, pp213-222
[6] Kim Jae-Do, Peng Yun, Melt pool shape and dilution of laser cladding with wire feeding, Journal of Materials Processing Technology, 2000, Vol.104, pp284-293
[7] Demure O., Aubry P., Chaventon F., and Sabatier L., Evaluation of rapid prototyping with filler wire and CO2 or YAG Laser, Section D-ICALEO, 2000, pp40-46
[8] Seefeld Thomas, Scubert Emil and Sepold Gerd, Simulation of the spray-forming process using a wire-fed laser technique, Journal of Materials Synthesis and Processing, 1997, Vol.5 No.1, pp19-30
[9] Fiedler H., Muhlbach H., Stephani G., The effect of the main processing parameters on the geometry of amorphous metal ribbons during planar flow casting (PFC), Journal of materials science, 1984, Vol.19, pp3229-3235
[10] Liebermann H.H. and Graham C.D., Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions, IEEE Transactions on Magnetics, 1976,Vol.1, No.6, pp921-923
[11] Gillen A. G and Cantor B., Photocalorimetric cooling rate measurements on a Ni-5wt%AL alloy rapidly solidified by melt spinning, Acta Metal, 1985, Vol. 33, No.10, pp1813-1825,
[12] Muhlbach H., Stephani G.、Sellger R. and Fiedler H., Cooling rate and heat transfer coefficient during planar flow casting of microcrystalline steel ribbons, International Journal of Rapid Solidification, 1987,Vol.3, pp 83-94.
[13] Takeshita Kunimasa, Hideo Shingu Paul, An analysis of the melt puddle formation in the single roller chill block casting, Transactions of the Japan institute of metals, 1986,Vol.27, No.2, pp141-148
[14] Granasy Laszlo, Analysis of the ribbon formation process on the single roller rapid solidification technique, Transactions of the Japan institute metals, 1986,Vol.27, No.1, pp51-60
[15] Carpenter J.K. and Steen P. H., On the transfer to the wheel in planar-flow melt spinning, Metallurgical Transactions B, 1990, vol.21B, pp279-283
[16] Kim Y., Farouk B., and Kverian J., A mathematical model for thermal analysis of thin strip casting of low carbon steel, Journal of Engineering for Industry, 1991,Vol.113, pp53-58
[17] Belenkii A. Ya. , Zolotarev S.N., Theoretical analysis of fluid dynamics and heat transfer in the single roller rapid solidification method, International Journal of Rapid Solidification, 1991, Vol.6, pp41-54.
[18] Kumar Anjan and Mehrotra Surya pratap, A mathematical model of single roll strip caster based on macroscopic enthalpy balances, Steel research, 1991,Vol.62,No.4, pp164-170
[19] Wang G. -X and Matthys E. F., Modeling of heat transfer and solidification during splat cooling: effect of splat thickness and splat/substrate thermal contact, International Journal of Rapid Solidification, 1991, Vol.6, pp141-174.
[20] Wang G. -X and Matthys E. F., Numerical modeling of phase change and heat transfer during rapid solidification processes: use of control volume integrals with element subdivision. Int. J. Heat Mass Transfer. 1992, Vol.35.No.1, pp141-153.
[21] Sousa A.C.M., Selih J., Gerber A. G. and Lenard J. G., Heat and fluid flow simulation of the melt-drag single-roll strip casting process, Journal of Materials Processing Technology, 1992,Vol.34, pp473-480
[22] Wu S. L., Chen C. W., Hwang W. S. and Yang C. C., Analysis for melt puddle in the planar flow casting process-A mathematical modeling study, Appl. Math. Modelling, 1992,Vol.16 pp394-403
[23] Chen Ching-Wen and Hwang Weng-Sing, A three-dimensional fluid flow model for puddle formation in the single-roll rapid solidification process, Appl. Math. Modelling, 1995, Vol.19, pp704-712
[24] Kubicar L. and Adamisova S., Theoretical analysis of ribbon formation by planar flow casting, international journal of rapid solidification, 1995,Vol.8, No.4, pp281-313,
[25] Shamsi.M. R. R. I. and Mehrotra S. P., Full rotation model of single roll continuous sheet casting process, Ironmaking and Steelmaking, 1998, Vol.25 No.2, pp150-158
[26] Glicksman, L. R., The Dynamics of a Heated free jet of variable viscosity liquid low Reynolds numbers, J. Basic Eng., 1968, Vol.90, pp343-354
[27] Peak, U. C., and Runk R. B., Physical behavior of the neck-down region during furnace drawing of silica fibers, J. Appl. Phys. 1978,Vol.49, No.8, pp4417-4422.
[28] Homsy G. M. and Walker K., Heat transfer in laser drawing of optical fibres, Glass Technology, 1979,Vol.20, No.1, pp20-26
[29] Lee. S.H.-K. and Jaluria Y., The effects of geometry and temperature variations on the radiative transport during optical fiber drawing, Journal of materials processing &manufacturing science, 1995, Vol.3, pp317-331
[30] Lee S.H.-K. and Jaluria Y., Effects of variable properties and viscous dissipation during optical fiber drawing, Transactions of the ASME. 1996,Vol.118, pp350-358.
[31] Lee S.H.-K. and Jaluria Y., Simulation of the transport processes in the neck-down region of a furnace drawn optical fiber, Int. J. Heat Mass Transfer. 1997, Vol.40, pp843-856
[32] Choudhury S.Roy and Jaluria Y., Practical aspects in the drawing of an optical fiber, J. Mater. Res., 1998, Vol.13, No.2, pp483-493.
[33] Yin Zhilong and Jaluria Y., Thermal transport and flow in high-speed optical fiber drawing, Transactions of the ASME, 1998, Vol.120, pp916-930.
[34] Choudhury S. Roy, Jaluriar Y. and Lee Steve H. -K., A computational method for generating the free-surface neck-down profile for glass flow in optical fiber drawing, Numerical Heat Transfer, Part A, 1999, Vol.35, pp 1-24.
[35] Yin Z. and Jaluri Y., Neck down and thermally induced defects in high-speed optical fiber drawing, Journal of Heat Transfer, 2000, Vol.122 pp351-362.
[36] Currie I. G., Fundamental Mechanics of Fluids, McGraw-Hill, 1993,
[37] 劉昶熠,雷射披覆之溫度分析,國立成功大學機械工程研究所碩士論文,民國89年
[38] FLUENT 4.4 User Guide, Fluent Inc. 1997
[39] Incropera Frank P. and DeWitt David P., Fundamentals of Heat and Mass Transfer, forth edition, John Wiley& sons, INC, 1996,
[40] Hirt C.W. and Nichols B.D., Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of computational physics, 1981,Vol.39, pp201-225
[41] Prakash C., Samonds M. and Singhal A.K., A fixed grid numerical methodology for phase change problems involving a moving heat source, Int. J. Heat mass transfer, 1987,Vol.30, No.12, pp2690-2694.
[42] 何清政,計算流體力學筆記,國立成功大學機械研究所,2001,
[43] Tannehill John C., Anderson Dale A. and Pletcher Richard H., Computational Fluid Mechanics and Heat Transfer, Second edition,1997, Taylor&Francis,
[44] Peckner D., Bernstein I. M., Handbook of Stainless steels, McGraw-Hill, 1997,
[45] Metals Handbook, 1990, ASM international, vol.1
[46] 黃文星,單輪快速凝固製程的三度空間流體流動與熱傳導現象之解析,行政院國家科學委員會專題研究計畫成果報告,1992,