簡易檢索 / 詳目顯示

研究生: 洪健富
Hung, Chien-Fu
論文名稱: 雷射送線披覆之厚度研究
Study of the Laser Cladding with Wire Feeding Method
指導教授: 林震銘
Lin, Jehnming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 143
中文關鍵詞: 披覆送線厚度溫度固液介面雷射
外文關鍵詞: thickness, cladding, liquid-solid interface, wire feeding, laser, temperature
相關次數: 點閱:82下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文目的為研究送線披覆圓管製程之厚度變化。針對單一披覆層,以數值分析及實驗方法進行分析。在數值分析方面,考慮披覆時整個時間歷程,包括金屬線融化、凝固和披覆層變化,運用連續、動量及能量方程式、自由表面計算、相變化模式及相關數值方法,以數值分析軟體FLUENT計算,分析不同的送線速度及圓管轉速下,厚度、溫度及固液介面的變化。在參數分析方面,計算不同雷射功率、送線速度及圓管轉速對披覆結果的影響並得到堆積、抽拉、波浪狀厚度變化三種結果的臨界速度條件。在披覆實驗方面,利用高速攝影機拍攝披覆情形,及使用光纖溫度感測器量測溫度,以得到不同圓管轉速下,厚度、寬度及溫度的變化,並和數值分析結果比較。本文研究的結果可作為多層披覆的快速原型製程基礎。

    The object of this thesis is to study the thickness variation of the laser cladding with a wire feeding technique. The problem was solved by numerical simulation and experimental observation. In the numerical analysis, the transient analysis includes the melting and solidification of the wire cladding. Using the computational fluid dynamics (CFD) software, FLUENT, the problem of the continuity, momentum, energy equations, free boundary and phase change models was solved. The numerical results show the wire cladding thickness, maximum temperature and liquid-solid interface at various cladding speeds.
    In order to investigate the effects of process parameters on the cladding profile, the influence of laser power, feeding rate and cladding velocity were also investigated. There are three basic mechanisms including the thickening, drawing and wavy thickness of the wire cladding profiles, which can be found in the numerical and experimental approaches. This research provides a clear insight of the mechanisms of the laser wire cladding and it is a fundamental study for the rapid prototype with multi-layer cladding technique in the future.

    中文摘要……………………………………………………………… Ⅰ 英文摘要……………………………………………………………… Ⅱ 誌謝…………………………………………………………………… Ⅲ 目錄…………………………………………………………………… Ⅳ 表目錄………………………………………………………………… Ⅶ 圖目錄………………………………………………………………… Ⅷ 符號說明……………………………………………………………… ⅩⅢ 第一章 緒論………………………………………………… 1 1-1 研究背景及目的……………………………………………. 1 1-2 文獻回顧……………………………………………………. 3 1-3 本文架構……………………………………………………. 9 第二章 數值分析理論……………………………………… 10 2-1 物理模型及假設……………………………………………. 10 2-2動量及熱傳方程式………………………………………….. 13 2-2.1熱傳邊界條件及傳導牆假設………………………… 14 2-3自由表面的計算…………………………………………….. 16 2-3.1介面追蹤、動量及能量方程式……………………… 16 2-3.2格點內的物理性質…………………………………… 17 2-3.3 數值方法…………………………………………….. 17 2-4 相變化模式…………………………………………………. 18 2-5 FLUENT數值計算軟體及數值方法……………………….. 21 2-6 FLUENT數值驗證………………………………………….. 26 第三章 數值分析結果……………………………………… 28 3-1 流場分析……………………………………………………. 28 3-1.1 幾何範圍及物理條件設定…………………………. 28 3-1.2 格點建立及測試……………………………………. 31 3-1.3 收斂性討論…………………………………………. 33 3-1.4 披覆層暫態分析……………………………………. 35 3-2 加工參數分析………………………………………………. 69 3-2.1 加工參數……………………………………………. 69 3-2.2 功率的影響…………………………………………. 69 3-2.3 送線速度的影響……………………………………. 73 3-2.4 圓管轉速的影響……………………………………. 78 3-2.5 披覆層溫度與固液介面隨時間變化………………. 80 3-2.6 組合速度對披覆層厚度變化的關係….…………... 82 3-3 結果與討論………………………………………………... 85 第四章 披覆實驗…………………………………………… 88 4-1 實驗儀器介紹………………………………………….. 88 4-2 實驗配置及誤差分析………………………………….. 89 4-3 實驗步驟及實驗條件………………………………….. 94 4-4 實驗結果及討論……………………………………….. 95 4-5 數值與實驗結果比較………………………………….. 102 第五章 綜合討論與建議…………………………………… 108 5-1綜合討論………………………………………………... 108 5-2建議及未來發展………………………………………... 111 參考文獻……………………………………………………………… 112 附錄A ...………………………………………………………………. 116 附錄B...……………………………………………………………….. 123 表目錄 表3-1 空氣的常溫(298 K)物理性質………………………………… 29 表3-2 AISI304不鏽鋼之物理性質…………………………………... 30 表3-3 測試網格結果………………………………………………… 32 表4-1 馬達驅動器頻率與圓管轉速的關係………………………… 91 表4-2 馬達驅動器頻率與切線速度的關係………………………… 92 表A-1 AISI SAE1020低碳鋼物理條件……………………………… 118 圖目錄 圖1-1 雷射送線披覆示意圖………………………………………… 1 圖1-2 快速凝固配置圖...……………………………………………. 5 圖2-1 披覆示意圖…………………………………………………… 10 圖2-2 披覆層分析的物理模型……………………………………… 11 圖2-3 CFD數值方法………………………………………………… 22 圖2-4 數值軟體FLUENT計算流程圖….………………………..… 23 圖2-5 控制體積圖…………………………………………………… 24 圖2-6 滾輪轉速與厚度變化關係,數值計算與文獻比較結果…… 27 圖3-1 披覆層分析之幾何範圍圖…………………………………… 29 圖3-2 黏度隨溫度變化值…………………………………………… 30 圖3-3 披覆層分析之網格圖………………………………………… 31 圖3-4 披覆層分析設定的邊界……………………………………… 32 圖3-5 功率500 W,送線速度5 mm/s,圓管轉速5 mm/s下,披覆層厚度變化圖…………………………………………... 38 圖3-6 功率500 W,送線速度5 mm/s,圓管轉速5 mm/s下,披覆層溫度分佈圖…………………………………………... 41 圖3-7 功率500 W,送線速度5 mm/s,圓管轉速5 mm/s下,披覆層固液介面變化圖……………………………………... 44 圖3-8 功率500 W,送線速度5 mm/s,圓管轉速4 mm/s下,披覆層厚度變化圖…………………………………………... 48 圖3-9 功率500 W,送線速度5 mm/s,圓管轉速4 mm/s下,披覆層溫度分佈圖…………………………………………... 50 圖3-10 功率500 W,送線速度5 mm/s,圓管轉速4 mm/s下,披覆層固液介面變化圖……………………………………... 52 圖3-11 功率500 W,送線速度5 mm/s,圓管轉速7 mm/s下,披覆層厚度變化圖………………………………………... 55 圖3-12 功率500 W,送線速度5 mm/s,圓管轉速7 mm/s下,披覆層溫度分佈圖………………………………………… 57 圖3-13 功率500 W,送線速度5 mm/s,圓管轉速7 mm/s下,披覆層固液介面變化圖…………………………………... 59 圖3-14 功率500 W,送線速度5 mm/s,圓管轉速15 mm/s下,披覆層厚度變化圖………………………………………... 63 圖3-15 功率500 W,送線速度5 mm/s,圓管轉速15 mm/s下,披覆層溫度分佈圖………………………………………… 65 圖3-16 功率500 W,送線速度5 mm/s,圓管轉速15 mm/s下,披覆層固液介面變化圖…………………………………... 67 圖3-17 送線速度5 mm/s,不同功率下圓管轉速與披覆層厚度變化關係圖…………………………………… 70 圖3-18 送線速度5 mm/s,不同功率下圓管轉速與披覆層最高溫度關係圖…………………………………… 71 圖3-19 送線速度5 mm/s,不同功率下圓管轉速與沿披覆層中心軸向固液介面變化圖……………………… 73 圖3-20 功率500 W,不同送線速度下圓管轉速與披覆層厚度變化關係圖…………………………………… 74 圖3-21 功率500 W,不同送線速度下速度差與披覆層厚度變化關係圖…………………………………… 75 圖3-22 功率500 W,不同送線速度下圓管轉速與披覆層最高溫度關係圖…………………………………… 76 圖3-23 功率500 W,不同送線速度下圓管轉速與沿披覆層中心軸向固液介面變化圖……………………… 77 圖3-24 功率500 W,送線速度5 mm/s,不同圓管轉速下沿披覆層中心軸向溫度分佈圖…………………………… 78 圖3-25 功率500 W,送線速度5 mm/s,不同圓管轉速下隨時間變化的披覆層固液介面…………………………… 79 圖3-26 功率500 W,送線速度5 mm/s,圓管轉速7 mm/s,不同時間下沿披覆層中心軸向溫度分佈圖……………… 81 圖3-27 功率500 W,送線速度5 mm/s,不同時間下,圓管轉速與沿披覆層中心軸向固液介面變化圖………… 82 圖3-28 功率500 W,圓管與送線速度對披覆層厚度變化關係圖…………………………………………… 84 圖3-29 功率500 W,組合速度差 與送線速度對產生波浪狀厚度變化的關係圖…………………………… 84 圖4-1 實驗配置圖…………………………………………………… 89 圖4-2 送線馬達速度誤差圖………………………………………… 93 圖4-3 功率500 W,送線速度5 mm/s,不同圓管轉速下披覆層厚度變化外觀圖……………………………………... 96 圖4-4 送線速度5 mm/s,厚度堆積與斷續披覆外觀圖……………. 97 圖4-5 功率500 W,送線速度6 mm/s,圓管轉速9 mm/s,高速攝影機拍攝披覆層連續變化情形……………………... 98 圖4-6 功率500 W,送線速度5 mm/s,圓管轉速與披覆厚度實驗值……………………………………………... 99 圖4-7功率500 W,送線速度5 mm/s,圓管轉速與披覆寬度實驗值……………………………………………... 100 圖4-8 功率500 W,送線速度5 mm/s,圓管轉速7 mm/s下,披覆層最高溫度隨時間變化圖……………………………... 101 圖4-9 功率500 W,送線速度5 mm/s,圓管轉速與披覆層最高溫度實驗結果…………………………………... 102 圖4-10 功率500 W,送線速度5 mm/s,實驗與數值披覆厚度比較…….…………………………….………….. 103 圖4-11 功率500 W,送線速度5 mm/s,披覆層厚度與寬度減少程度實驗結果比較…………………………… 105 圖4-12 組合速度與披覆厚度,實驗與數值結果比較……………… 106 圖4-13 功率500 W,送線速度5 mm/s,實驗與數值披覆層最高溫度比較……………………………………… 107 圖A-1 快速凝固示意圖……………………………………………... 116 圖A-2 快速凝固分析之幾何範圍圖………………………………... 117 圖A-3 初始溫度1843K,h=25000 W/m2-K,速度0.2 m/s下凝固厚度……………………………………………………... 119 圖A-4 初始溫度1843K,h=25000 W/m2-K,速度0.8 m/s下凝固厚度……………………………………………………... 119 圖A-5 初始溫度1843K,h=5500 W/m2-K,速度0.2 m/s下凝固厚度……………………………………………………... 120 圖A-6 初始溫度1843K,h=5500 W/m2-K,速度0.8 m/s下凝固厚度……………………………………………………... 120 圖A-7 初始溫度1843K,h= 25000W/m2-K,FLUENT分析與論文比較結果……………………………... 121 圖A-8 初始溫度1843K,h= 5500W/m2-K,FLUENT分析與論文比較結果……………………………... 121 圖B-1 密度隨溫度變化圖…………………………………………... 123 圖B-2 比熱隨溫度變化圖…………………………………………... 124

    [1] Serope Kalpakjian, Manufacturing Engineering and Technology, Third Edition, Addison-Wesley, 1998,
    [2] Serope Kalpakjian, Manufacturing Processes for Engineering Materials, Third Edition, Addison Wesley, 1997,
    [3] Salminen A. S., Kujanpaa V. P. and Moisio T. J. I., Interactions between laser beam and filler Metal, Welding research supplement, 1996, pp9-13-s,
    [4] Sun Z. and Salminen A. S., Current status of laser welding with wire Feed, Materials and Manufacturing Processes, 1997, Vol.12, No.5, pp759-777
    [5] Sun Z. and Kuo M., Bridging the joint gap with wire feed laser welding, Journal of Materials Processing Technology, 1999, Vol.87, pp213-222
    [6] Kim Jae-Do, Peng Yun, Melt pool shape and dilution of laser cladding with wire feeding, Journal of Materials Processing Technology, 2000, Vol.104, pp284-293
    [7] Demure O., Aubry P., Chaventon F., and Sabatier L., Evaluation of rapid prototyping with filler wire and CO2 or YAG Laser, Section D-ICALEO, 2000, pp40-46
    [8] Seefeld Thomas, Scubert Emil and Sepold Gerd, Simulation of the spray-forming process using a wire-fed laser technique, Journal of Materials Synthesis and Processing, 1997, Vol.5 No.1, pp19-30
    [9] Fiedler H., Muhlbach H., Stephani G., The effect of the main processing parameters on the geometry of amorphous metal ribbons during planar flow casting (PFC), Journal of materials science, 1984, Vol.19, pp3229-3235
    [10] Liebermann H.H. and Graham C.D., Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions, IEEE Transactions on Magnetics, 1976,Vol.1, No.6, pp921-923
    [11] Gillen A. G and Cantor B., Photocalorimetric cooling rate measurements on a Ni-5wt%AL alloy rapidly solidified by melt spinning, Acta Metal, 1985, Vol. 33, No.10, pp1813-1825,
    [12] Muhlbach H., Stephani G.、Sellger R. and Fiedler H., Cooling rate and heat transfer coefficient during planar flow casting of microcrystalline steel ribbons, International Journal of Rapid Solidification, 1987,Vol.3, pp 83-94.
    [13] Takeshita Kunimasa, Hideo Shingu Paul, An analysis of the melt puddle formation in the single roller chill block casting, Transactions of the Japan institute of metals, 1986,Vol.27, No.2, pp141-148
    [14] Granasy Laszlo, Analysis of the ribbon formation process on the single roller rapid solidification technique, Transactions of the Japan institute metals, 1986,Vol.27, No.1, pp51-60
    [15] Carpenter J.K. and Steen P. H., On the transfer to the wheel in planar-flow melt spinning, Metallurgical Transactions B, 1990, vol.21B, pp279-283
    [16] Kim Y., Farouk B., and Kverian J., A mathematical model for thermal analysis of thin strip casting of low carbon steel, Journal of Engineering for Industry, 1991,Vol.113, pp53-58
    [17] Belenkii A. Ya. , Zolotarev S.N., Theoretical analysis of fluid dynamics and heat transfer in the single roller rapid solidification method, International Journal of Rapid Solidification, 1991, Vol.6, pp41-54.
    [18] Kumar Anjan and Mehrotra Surya pratap, A mathematical model of single roll strip caster based on macroscopic enthalpy balances, Steel research, 1991,Vol.62,No.4, pp164-170
    [19] Wang G. -X and Matthys E. F., Modeling of heat transfer and solidification during splat cooling: effect of splat thickness and splat/substrate thermal contact, International Journal of Rapid Solidification, 1991, Vol.6, pp141-174.
    [20] Wang G. -X and Matthys E. F., Numerical modeling of phase change and heat transfer during rapid solidification processes: use of control volume integrals with element subdivision. Int. J. Heat Mass Transfer. 1992, Vol.35.No.1, pp141-153.
    [21] Sousa A.C.M., Selih J., Gerber A. G. and Lenard J. G., Heat and fluid flow simulation of the melt-drag single-roll strip casting process, Journal of Materials Processing Technology, 1992,Vol.34, pp473-480
    [22] Wu S. L., Chen C. W., Hwang W. S. and Yang C. C., Analysis for melt puddle in the planar flow casting process-A mathematical modeling study, Appl. Math. Modelling, 1992,Vol.16 pp394-403
    [23] Chen Ching-Wen and Hwang Weng-Sing, A three-dimensional fluid flow model for puddle formation in the single-roll rapid solidification process, Appl. Math. Modelling, 1995, Vol.19, pp704-712
    [24] Kubicar L. and Adamisova S., Theoretical analysis of ribbon formation by planar flow casting, international journal of rapid solidification, 1995,Vol.8, No.4, pp281-313,
    [25] Shamsi.M. R. R. I. and Mehrotra S. P., Full rotation model of single roll continuous sheet casting process, Ironmaking and Steelmaking, 1998, Vol.25 No.2, pp150-158
    [26] Glicksman, L. R., The Dynamics of a Heated free jet of variable viscosity liquid low Reynolds numbers, J. Basic Eng., 1968, Vol.90, pp343-354
    [27] Peak, U. C., and Runk R. B., Physical behavior of the neck-down region during furnace drawing of silica fibers, J. Appl. Phys. 1978,Vol.49, No.8, pp4417-4422.
    [28] Homsy G. M. and Walker K., Heat transfer in laser drawing of optical fibres, Glass Technology, 1979,Vol.20, No.1, pp20-26
    [29] Lee. S.H.-K. and Jaluria Y., The effects of geometry and temperature variations on the radiative transport during optical fiber drawing, Journal of materials processing &manufacturing science, 1995, Vol.3, pp317-331
    [30] Lee S.H.-K. and Jaluria Y., Effects of variable properties and viscous dissipation during optical fiber drawing, Transactions of the ASME. 1996,Vol.118, pp350-358.
    [31] Lee S.H.-K. and Jaluria Y., Simulation of the transport processes in the neck-down region of a furnace drawn optical fiber, Int. J. Heat Mass Transfer. 1997, Vol.40, pp843-856
    [32] Choudhury S.Roy and Jaluria Y., Practical aspects in the drawing of an optical fiber, J. Mater. Res., 1998, Vol.13, No.2, pp483-493.
    [33] Yin Zhilong and Jaluria Y., Thermal transport and flow in high-speed optical fiber drawing, Transactions of the ASME, 1998, Vol.120, pp916-930.
    [34] Choudhury S. Roy, Jaluriar Y. and Lee Steve H. -K., A computational method for generating the free-surface neck-down profile for glass flow in optical fiber drawing, Numerical Heat Transfer, Part A, 1999, Vol.35, pp 1-24.
    [35] Yin Z. and Jaluri Y., Neck down and thermally induced defects in high-speed optical fiber drawing, Journal of Heat Transfer, 2000, Vol.122 pp351-362.
    [36] Currie I. G., Fundamental Mechanics of Fluids, McGraw-Hill, 1993,
    [37] 劉昶熠,雷射披覆之溫度分析,國立成功大學機械工程研究所碩士論文,民國89年
    [38] FLUENT 4.4 User Guide, Fluent Inc. 1997
    [39] Incropera Frank P. and DeWitt David P., Fundamentals of Heat and Mass Transfer, forth edition, John Wiley& sons, INC, 1996,
    [40] Hirt C.W. and Nichols B.D., Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of computational physics, 1981,Vol.39, pp201-225
    [41] Prakash C., Samonds M. and Singhal A.K., A fixed grid numerical methodology for phase change problems involving a moving heat source, Int. J. Heat mass transfer, 1987,Vol.30, No.12, pp2690-2694.
    [42] 何清政,計算流體力學筆記,國立成功大學機械研究所,2001,
    [43] Tannehill John C., Anderson Dale A. and Pletcher Richard H., Computational Fluid Mechanics and Heat Transfer, Second edition,1997, Taylor&Francis,
    [44] Peckner D., Bernstein I. M., Handbook of Stainless steels, McGraw-Hill, 1997,
    [45] Metals Handbook, 1990, ASM international, vol.1
    [46] 黃文星,單輪快速凝固製程的三度空間流體流動與熱傳導現象之解析,行政院國家科學委員會專題研究計畫成果報告,1992,

    下載圖示 校內:2012-07-09公開
    校外:2012-07-09公開
    QR CODE