簡易檢索 / 詳目顯示

研究生: 黃皇翔
Huang, Huang-Hsiang
論文名稱: 膜厚與矽氧烷寡聚物對聚乳酸分子低維度晶相成長之影響
The influence of film thickness and Polyhedral Oligomeric Silsesquioxanes on the low-dimensional crystallization of Polylactide
指導教授: 阮至正
Ruan, Jr-Jeng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 79
中文關鍵詞: 聚乳酸矽氧烷寡聚物膜厚成核劑板晶彎曲
外文關鍵詞: PLLA, POSS, nucleating agent, lamellar bending, lamellar thickness
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究主要是在不同晶相成長溫度,探討膜厚改變以及添加成核劑,對於高分子低維度晶相成長之影響。所研究的系統分別為膜厚13 nm和27 nm的聚左乳酸分子Poly-(L-lactic acid) (PLLA)薄膜,以及利用矽氧烷寡聚物OctaIsobutyl polyhedral oligomeric silsesquioxanes (IPOSS)作為成核劑,與聚左乳酸分子(PLLA)混摻比製作成膜厚13 nm之薄膜。13 nm薄膜厚度,約相當於單層的板晶厚度,因此有利於觀察低維度的結晶成長。另外也就探討四氫呋喃Tetrahydrofuran (THF)溶劑蒸氣對於聚左乳酸分子(PLLA)晶相成長以及再結晶行為之影響。
    透過電子顯微鏡的觀察,發現膜厚增加對於聚左乳酸分子(PLLA)晶相成長行為有顯著的影響,不止晶相成長速度大幅提升,結晶形態也發生變化。原本在低溫(80 °C)晶相成長所生成的edge-on板晶,具有朝順時針彎曲的趨勢存在,形成S形曲線(S-curve)。但當膜厚增加(27 nm)時,edge-on板晶分支在結晶初期就出現,且與膜薄時不同,板晶分支是從同ㄧ個點向外,順時針與逆時針彎曲同時發生的對稱成長。
    此外,透過矽氧烷寡聚物(IPOSS)的混摻,也可改變聚左乳酸分子(PLLA)的晶相成長行為。利用偏光顯微鏡做in-situ觀察發現,混摻IPOSS的聚左乳酸(PLLA)薄膜,在等速降溫的過程中,結晶成長開始發生的溫度明顯提高。但當混摻薄膜厚度降至13 nm時,透過電子顯微鏡的觀察指出,薄膜內的結晶成長速率大幅下降。且在低溫(80 °C)結晶成長時,edge-on板晶分支(lamellar branching)現象也較不容易產生。而在高溫(120 °C)結晶成長所生成的flat-on板晶,在混摻過後也變得粗大且不規則,連原本不易生成的edge-on板晶也伴隨著大量出現。因此可知,當薄膜厚度減少,矽氧烷寡聚物(IPOSS)於聚左乳酸分子(PLLA)中雖然可以扮演成核劑的角色,增加edge-on板晶的成長,但在另一方面,卻抑制了分子鏈段的擴散與晶相的成長速率。
    除上述透過膜厚及混摻成核劑,來改變聚左乳酸分子(PLLA)低維度的晶相成長外,也嘗試利用溶劑蒸氣來誘發薄膜晶相成長及再結晶。將未經持溫的13 nm聚左乳酸分子(PLLA)薄膜,直接置放於四氫呋喃(THF)溶劑蒸氣中。由電子顯微鏡觀察可發現,溶劑蒸氣可以很快的誘發晶相成長,原本在不同晶相成長溫度所形成的flat-on板晶和edge-on板晶可以同時在室溫成長。且所生成edge-on板晶朝逆時針彎曲成長,與直接在晶相成長溫度持溫形成的結晶剛好相反。另外也分別將已經在高溫及低溫晶相成長溫度結晶完的薄膜,置於四氫呋喃 (THF)溶劑蒸氣中數小時,發現隨著置放的時間增加,原本的結晶會先溶解,然後發生再結晶的現象。

    This research was intended to improve the mechanical properties and degradation rate of PLLA by changing film thickness and mixing in POSS as the nucleating agent. The chemical formula of PLLA is (C3H4O2)n and that of POSS is (RSiO1.5)n.
    The experiment result suggested that the increase of film thickness contributes greatly to the growth rate of crystals, whereas the addition of POSS particles did the completely the opposite. The lamellar morphology also had been changing, when the film thickness increased and POSS-mixed. The branching of edge-on lamella were somewhat symmetric as the film thickness increased. And the POSS particles preferentially induced the growth of edge-on lamellae at a higher selected temperature of 120 °C; both the edge-on lamella and flat-on lamella were observed.

    摘要 I 英文延伸摘要 II 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 第二章 文獻回顧 2 2-1 高分子結晶成長與重組 2 2-2 聚左乳酸POLY (L-LATIC ACID), (PLLA)分子在薄膜中的基本結晶行為 8 2-3 混摻多面體矽氧烷寡聚物(POSS)對於高分子結晶的影響 15 2-3-1 多面體矽氧烷寡聚物 (Polyhedral Oligomeric Silsesquioxane, POSS) 15 2-3-2 混摻多面體矽氧烷寡聚物(POSS)對高分子結晶的影響 17 2-4 混摻二苯亞甲基山梨醇(1,3:2,4-DIBENZYLIDENE SORBITOL, DBS)對於高分子結晶的影響 21 2-4-1 DBS基本性質 21 2-4-2 混摻二苯亞甲基山梨醇(DBS)對聚左乳酸(PLLA)所造成的影響 22 2-5 球晶成長習性 28 第三章 實驗材料與方法 31 3-1 實驗材料 31 3-2 實驗儀器 32 3-3 實驗步驟 35 3-3-1 樣品製備 35 3-3-2 等溫結晶實驗 35 3-3-3 室溫溶劑蒸氣誘發PLLA晶相成長實驗 35 3-3-4 常溫溶劑蒸氣誘發PLLA再結晶實驗 35 3-3-5 電子顯微鏡分析 35 第四章 結果與討論 36 4-1 PLLA薄膜低溫(80 °C)結晶成長 36 4-1-1 膜厚增加對於PLLA薄膜低溫(80 °C)結晶成長的影響 40 4-1-2 添加成核劑(IPOSS)對於PLLA薄膜低溫(80 °C)結晶成長的影響 47 4-1-3 PLLA薄膜在低溫(80 °C)結晶成長總整理 52 4-2 PLLA薄膜高溫(120 °C)結晶成長 53 4-2-1 膜厚增加(27 nm)對於PLLA薄膜高溫(120 °C)結晶成長的影響 57 4-2-2 添加成核劑(IPOSS)對於PLLA薄膜高溫(120 °C)結晶成長的影響 60 4-2-3 PLLA薄膜在高溫(120 °C)結晶成長總整理 63 4-3 PLLA薄膜在THF溶劑蒸氣中的晶相成長及再結晶 64 4-3-1 溶劑蒸氣誘發PLLA薄膜晶相成長 64 4-3-2 溶劑蒸氣誘發PLLA薄膜再結晶 68 第五章 總結 74 參考文獻 76

    1. Wunderlich B: Macromolecular physics. vol. 1: Crystal structure morphology, defects, Academic Press, 1973.
    2. Wunderlich B: Macromolecular physics, Crystal nucleation, growth, annealing, Vol. 2. Academic: New York, 1976.
    3. Bassett DC: On the role of the hexagonal phase in the crystallization of polyethylene, in Allegra G (ed): Interphases and Mesophases in Polymer Crystallization I, Vol 180. Berlin, Springer-Verlag Berlin, 2005, pp 1-16.
    4. Hikosaka M, Watanabe K, Okada K, et al: Topological Mechanism of Polymer Nucleation and Growth–The Role of Chain Sliding Diffusion and Entanglement, in Interphases and Mesophases in Polymer Crystallization III, Vol Springer, 2005, pp 137-186.
    5. Storks KH: An Electron Diffraction Examination of Some Linear High Polymers. Journal of the American Chemical Society 60:1753-1761, 1938.
    6. Magonov SN, Yerina NA, Ungar G, et al: Chain Unfolding in Single Crystals of Ultralong Alkane C390H782 and Polyethylene:  An Atomic Force Microscopy Study. Macromolecules 36:5637-5649, 2003.
    7. Rastogi S, Spoelstra AB, Goossens JGP, et al: Chain Mobility in Polymer Systems:  on the Borderline between Solid and Melt. 1. Lamellar Doubling during Annealing of Polyethylene. Macromolecules 30:7880-7889, 1997.
    8. Gong J, Ahn H, Kim E, et al: Rapid structural reorganization in thin films of block copolymer self-assembly. Soft Matter 8:3570, 2012.
    9. Zhang J, Tashiro K, Domb AJ, et al: Confirmation of Disorder α Form of Poly(L-lactic acid) by the X-ray Fiber Pattern and Polarized IR/Raman Spectra Measured for Uniaxially-Oriented Samples. Macromolecular Symposia 242:274-278, 2006.
    10. Zhang J, Duan Y, Sato H, et al: Crystal Modifications and Thermal Behavior of Poly(l-lactic acid) Revealed by Infrared Spectroscopy. Macromolecules 38:8012-8021, 2005.
    11. Wang F-D, Ruan J, Huang Y-F, et al: Stem Tilt in the Contact Plane of Epitaxially Grown Polylactide Lamellae and Its Direct Correlation with Lamellar Bending. Macromolecules 44:4335-4341, 2011.
    12. Franke M, Rehse N: Three-Dimensional Structure Formation of Polypropylene Revealed by in Situ Scanning Force Microscopy and Nanotomography. Macromolecules 41:163-166, 2007.
    13. Phillips SH, Haddad TS, Tomczak SJ: Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Current Opinion in Solid State and Materials Science 8:21-29, 2004.
    14. Brown JF, Vogt LH: The Polycondensation of Cyclohexylsilanetriol. Journal of the American Chemical Society 87:4313-4317, 1965.
    15. Baney RH, Itoh M, Sakakibara A, et al: Silsesquioxanes. Chemical Reviews 95:1409-1430, 1995.
    16. Zhang C, Laine RM: Hydrosilylation of Allyl Alcohol with [HSiMe2OSiO1.5]8: Octa(3-hydroxypropyldimethylsiloxy)octasilsesquioxane and Its Octamethacrylate Derivative as Potential Precursors to Hybrid Nanocomposites. Journal of the American Chemical Society 122:6979-6988, 2000.
    17. Choi J, Harcup J, Yee AF, et al: Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Journal of the American Chemical Society 123:11420-11430, 2001.
    18. Laine RM, Choi J, Lee I: Organic–Inorganic Nanocomposites with Completely Defined Interfacial Interactions. Advanced Materials 13:800-803, 2001.
    19. Tamaki R, Tanaka Y, Asuncion MZ, et al: Octa(aminophenyl)silsesquioxane as a Nanoconstruction Site. Journal of the American Chemical Society 123:12416-12417, 2001.
    20. Zheng L, Waddon AJ, Farris RJ, et al: X-ray Characterizations of Polyethylene Polyhedral Oligomeric Silsesquioxane Copolymers. Macromolecules 35:2375-2379, 2002.
    21. Zhang C, Babonneau F, Bonhomme C, et al: Highly Porous Polyhedral Silsesquioxane Polymers. Synthesis and Characterization. Journal of the American Chemical Society 120:8380-8391, 1998.
    22. Feher FJ, Soulivong D, Lewis GT: Facile Framework Cleavage Reactions of a Completely Condensed Silsesquioxane Framework. Journal of the American Chemical Society 119:11323-11324, 1997.
    23. Fu BX, Yang L, Somani RH, et al: Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. Journal of Polymer Science Part B: Polymer Physics 39:2727-2739, 2001.
    24. Fu BX, Gelfer MY, Hsiao BS, et al: Physical gelation in ethylene–propylene copolymer melts induced by polyhedral oligomeric silsesquioxane (POSS) molecules. Polymer 44:1499-1506, 2003.
    25. Waddon AJ, Zheng L, Farris RJ, et al: Nanostructured polyethylene-POSS copolymers: Control of crystallization and aggregation. Nano Letters 2:1149-1155, 2002.
    26. Lipp J, Shuster M, Terry AE, et al: Fibril Formation of 1,3:2,4-Di(3,4-dimethylbenzylidene) Sorbitol in a Polypropylene Melt. Langmuir 22:6398-6402, 2006.
    27. Mercurio DJ, Spontak RJ: Morphological Characteristics of 1,3:2,4-Dibenzylidene Sorbitol/Poly(propylene glycol) Organogels. The Journal of Physical Chemistry B 105:2091-2098, 2001.
    28. Wilder EA, Spontak RJ, Hall CK: The molecular structure and intermolecular interactions of 1,3:2,4-dibenzylidene-D-sorbitol. Molecular Physics 101:3017-3027, 2003.
    29. Wilder EA, Hall CK, Khan SA, et al: Effects of Composition and Matrix Polarity on Network Development in Organogels of Poly(ethylene glycol) and Dibenzylidene Sorbitol. Langmuir 19:6004-6013, 2003.
    30. Wilder EA, Braunfeld MB, Jinnai H, et al: Nanofibrillar Networks in Poly(ethyl methacrylate) and Its Silica Nanocomposites. The Journal of Physical Chemistry B 107:11633-11642, 2003.
    31. Kühne M, Friedrich C: Nonlinear rheological properties and stability of dibenzylidene sorbitol fiber networks in poly(propylene oxide). Rheologica Acta 48:1-9, 2009.
    32. Wilder EA, Hall CK, Spontak RJ: Physical organogels composed of amphiphilic block copolymers and 1,3:2,4-dibenzylidene-D-sorbitol. Journal of Colloid and Interface Science 267:509-518, 2003.
    33. Mohmeyer N, Wang P, Schmidt H-W, et al: Quasi-solid-state dye sensitized solar cells with 1,3:2,4-di-O-benzylidene-d-sorbitol derivatives as low molecular weight organic gelators. Journal of Materials Chemistry 14:1905, 2004.
    34. Acid stable dibenzylidene sorbitol gelled clear solid antiperspirant formulation:1. J Soc Casmet Chem 37:225-231, 1986.
    35. Wei-Chi L, Shen-Chen T: Novel polymeric nanocomposites and porous materials prepared using organogels %U http://stacks.iop.org/0957-4484/20/i=47/a=475606. Nanotechnology 20:475606, 2009.
    36. Feng Y, Jin X, Hay JN: Effect of nucleating agent addition on crystallization of isotactic polypropylene. Journal of Applied Polymer Science 69:2089-2095, 1998.
    37. Mitra D, Misra A: Study on the effect of dibenzylidene sorbitol as a nucleating agent on the crystallization and morphology of poly(ethylene terephthalate). Journal of Applied Polymer Science 36:387-402, 1988.
    38. Lipp J, Shuster M, Feldman G, et al: Oriented Crystallization in Polypropylene Fibers Induced by a Sorbitol-Based Nucleator. Macromolecules 41:136-140, 2007.
    39. Lai WC: Thermal behavior and crystal structure of poly(L-lactic acid) with 1,3:2,4-dibenzylidene-D-sorbitol. J Phys Chem B 115:11029-11037, 2011.
    40. Lai W-C: The effect of self-assembled nanofibrils on the morphology and microstructure of poly(l-lactic acid). Soft Matter 7:3844, 2011.
    41. Burke M, Young RJ, Stanford JL: The relationship between structure and properties in titanium dioxide filled polypropylene. Polymer Bulletin 30:361-368, 1993.
    42. Wunderlich B: Macromolecular physics. 1.
    43. Norton DR, Keller A: The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene. Polymer 26:704-716, 1985.

    無法下載圖示 校內:2019-09-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE