簡易檢索 / 詳目顯示

研究生: 王譯
Wang, Yi
論文名稱: Optimizing user experience in hotel chatbot interactions: Perspectives of task characteristics, chatbot efficiency, and service climate
Optimizing user experience in hotel chatbot interactions: Perspectives of task characteristics, chatbot efficiency, and service climate
指導教授: 林彣珊
Lin, Wen-Shan
學位類別: 碩士
Master
系所名稱: 管理學院 - 國際經營管理研究所碩士在職專班
Institute of International Management (IIMBA--Master)(on the job class)
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 94
中文關鍵詞: 聊天機器人技術客戶滿意度飯店訂房系統自動化服務使用者體驗技術接受模型(TAM)
外文關鍵詞: Chatbot Technology, Customer Satisfaction, Hotel Booking System, Service Automation, User Experience, Technology Acceptance Model (TAM)
相關次數: 點閱:53下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為探討以線上聊天機器人整合進線上訂房系統對於提升飯店訂房業務和客戶服務的關鍵成功因素。研究團隊以台灣東部的一家中小型旅館為研究個案,採用實證研究法,研究架構以技術接受模型(TAM)和期望確認模型(ECM)理論框架為基礎,依變項為顧客的再訂購意願。研究方法應用結構方程模型(SEM)和PROCESS MACRO模型14進行驗證。研究結果(樣本數=303)顯示,任務特性和聊天機器人技術在用戶滿意度和感知控制之間扮演重要中介角色,這兩者皆影響再次訂房意願。此外,服務氣氛(Service Climate)調節並加強了任務-聊天機器人技術適配性對感知控制的相關聯性,雖對重新訂房意圖影響不顯著。研究結果凸顯了技術能力與任務要求的適配性對於提升用戶滿意度和飯店品牌和再購意願的重要性,也揭示了聊天機器人技術在促進客戶關係方面的潛力。

    Integrating AI-powered chatbots into online booking systems is essential to enhancing hotel business and customer service quality. This study comprises a small-medium hostel in eastern Taiwan. It aims to analyze how task characteristics and chatbot technology characteristics—specifically autonomy and efficiency—affect real customers’ experience in hotel bookings. This study employs the research methods of structural equation modeling (SEM) and PROCESS MACRO Model 14 for examining the research framework that has foundations of the study drawn from the technology acceptance model (TAM) and the expectation-confirmation model (ECM) theories frameworks. An empirical study was conducted by involving the sampling subjects of 303 responses. Results indicate that task characteristics and chatbot technology significantly mediate the relationship between user satisfaction and perceived control, both essential to rebooking intentions. Furthermore, service climate (SC) serves as a moderator, enhancing the mediation effect of task-chatbot technology fit on perceived control, although it does not significantly affect rebooking intentions. This study highlights the importance of aligning technological capabilities with task requirements to boost user satisfaction and promote loyalty in the hotel industry. It also sheds light on deploying chatbot technologies to enhance customer relationships.

    ABSTRACT I ACKNOWLEDGEMENTS III TABLE OF CONTENTS V LIST OF TABLES VII LIST OF FIGURES IX CHAPTER ONE INTRODUCTION 1 1.1 Research Background. 1 1.2 Research Gaps. 7 1.3 Research Objective. 8 1.4 Research Questions. 9 1.5 Research Procedure 11 CHAPTER TWO LITERATURE REVIEW 12 2.1 Theoretical Framework. 12 2.1.1 Technology Acceptance Model. 12 2.1.2 Expectation-Confirmation Model. 13 CHAPTER THREE RESEARCH DESIGN AND METHODOLOGY 18 3.1 Research Framework. 18 3.2 Task Characteristics and Chatbot Technology Fit. 18 3.3 Chatbot Technology Characteristics and Task Chatbot Technology Fit. 20 3.4 Task Chatbot Technology Fit and Performance Impacts. 21 3.5 Task Chatbot Technology Fit and Utilization Rebooking Intention. 23 3.6 Moderation of Service Climate. 24 3.7 Summary of Hypotheses. 27 3.8 Questionnaire Design and Construct Measurement. 27 3.9 Control Variables. 32 3.10 Sampling Plan. 33 3.10.1 T-test statistics for differences in groups 35 3.11 Methods of Analysis. 37 CHAPTER FOUR RESEARCH RESULTS 40 4.1 Data Collection. 40 4.2 Descriptive Analysis. 41 4.3 Descriptive Statistics Analysis. 42 4.4 Explanatory Factor Analysis. 45 4.5 Common Method Bias. 48 4.6 Structural Equation Modelling. 49 4.7 Hypothesis Testing. 51 4.8 Moderation using SEM (AMOS). 54 CHAPTER FIVE CONCLUSIONS AND DISCUSSION 59 5.1 Discussion. 59 5.2 Theoretical Implications. 63 5.3 Practical Implications. 65 5.4 Limitations and Future Work. 67 REFERENCES 69 APPENDICES 69 Appendix 1: Moderation Using PROCESS MACRO 79 Appendix 2: Video content posted to the participants 81

    Al-Sharafi, M. A., Al-Qaysi, N., Iahad, N. A., & Al-Emran, M. (2022). Evaluating the sustainable use of mobile payment contactless technologies within and beyond the covid-19 pandemic using a hybrid sem-ann approach. International Journal of Bank Marketing, 40(5), 1071-1095.
    Ali, F., El-Manstrly, D., & Abbasi, G. A. (2023). Would you forgive me? From perceived justice and complaint handling to customer forgiveness and brand credibility-symmetrical and asymmetrical perspectives. Journal of Business Research, 166(0), 114-138.
    Anderson, E. W., & Mittal, V. (2000). Strengthening the satisfaction-profit chain. Journal of Service Research, 3(2), 107-120.
    Anderson, E. W., & Sullivan, M. W. (1993). The antecedents and consequences of customer satisfaction for firms. Marketing Science, 12(2), 125-143.
    Bateson, J. E. (1983). Perceived control and the service encounter: London Business School.
    Behera, R. K., Bala, P. K., & Ray, A. (2024). Cognitive chatbot for personalised contextual customer service: Behind the scene and beyond the hype. Information Systems Frontiers, 26(3), 899-919.
    Benbasat, I., & Barki, H. (2007). Quo vadis tam? Journal of The Association for Information Systems, 8(4), 1-7.
    Benke, I., Gnewuch, U., & Maedche, A. (2022). Understanding the impact of control levels over emotion-aware chatbots. Computers in Human Behavior, 129(0), 107-122.
    Berezina, K., Bilgihan, A., Cobanoglu, C., & Okumus, F. (2016). Understanding satisfied and dissatisfied hotel customers: Text mining of online hotel reviews. Journal of Hospitality Marketing & Management, 25(1), 1-24.
    Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370.
    Bilgihan, A., Kandampully, J., & Zhang, T. (2016). Towards a unified customer experience in online shopping environments: Antecedents and outcomes. International Journal of Quality and Service Sciences, 8(1), 102-119.
    Bitner, M. J., Brown, S. W., & Meuter, M. L. (2000). Technology infusion in service encounters. Journal of the Academy of Marketing Science, 28(1), 138-149.
    Blut, M., Frennea, C. M., Mittal, V., & Mothersbaugh, D. L. (2015). How procedural, financial and relational switching costs affect customer satisfaction, repurchase intentions, and repurchase behavior: A meta-analysis. International Journal of Research in Marketing, 32(2), 226-229.
    Bowen, D. E., & Schneider, B. (2020). Service climate: synthesis and future research agenda. Journal of Service Research, 23(3), 369-385.
    Bowen, D. E., Fisk, R. P., Bateson, J. E., Berry, L. L., Bitner, M. J., Brown, S. W., Parasuraman, A. (2023). Learning from the pioneering founders of the service research field. Journal of Service Management, 34(4), 605-630.
    Buhalis, D., & Moldavska, I. (2022). Voice assistants in hospitality: using artificial intelligence for customer service. Journal of Hospitality and Tourism Technology, 13(3), 386-403.
    Chen, Q., Lu, Y., Gong, Y., & Xiong, J. (2023). Can AI chatbots help retain customers? Impact of AI service quality on customer loyalty. Internet Research, 33(6), 2205-2243.
    Cheng, X., Zhang, X., Cohen, J., & Mou, J. (2022). Human vs. AI: Understanding the impact of anthropomorphism on consumer response to chatbots from the perspective of trust and relationship norms. Information Processing & Management, 59(3), 102-940.
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
    DeVellis, R. F. (2016). Scale development: Theory and applications. Vol. 26 sage publications. Los Angeles, London, New Dehli, Singapore, Washington DC, Melbourne.
    Dhiman, N., & Jamwal, M. (2023). Tourists’ post-adoption continuance intentions of chatbots: Integrating task–technology fit model and expectation–confirmation theory. Foresight, 25(2), 209-224.
    Fan, A., Wu, L., Miao, L., & Mattila, A. S. (2020). When does technology anthropomorphism help alleviate customer dissatisfaction after a service failure?–the moderating role of consumer technology self-efficacy and interdependent self-construal. Journal of Hospitality Marketing & Management, 29(3), 269-290.
    Feine, J., Gnewuch, U., Morana, S., & Maedche, A. (2019). A taxonomy of social cues for conversational agents. International Journal of Human-Computer Studies, 132(0), 138-161.
    Fliess, S., & Volkers, M. (2020). Trapped in a service encounter: Exploring customer lock-in and its effect on well-being and coping responses during service encounters. Journal of Service Management, 31(1), 79-114.
    Friend, S. B., Jaramillo, F., & Johnson, J. S. (2020). Ethical climate at the frontline: A meta-analytic evaluation. Journal of Service Research, 23(2), 116-138.
    Garrido-Moreno, A., Garcia-Morales, V. J., & Martín-Rojas, R. (2021). Going beyond the curve: Strategic measures to recover hotel activity in times of covid-19. International Journal of Hospitality Management, 96(0), 102-928.
    Gebauer, H., Fleisch, E., & Friedli, T. (2018). Overcoming the service paradox in manufacturing companies. Journal of Service Management, 29(5), 783-808.
    Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213-236.
    Gretzel, U., Sigala, M., Xiang, Z., & Koo, C. (2015). Smart tourism: Foundations and developments. Electronic Markets, 25(0), 179-188.
    Gupta, K. P., & Maurya, H. (2022). Adoption, completion and continuance of moocs: A longitudinal study of students’ behavioural intentions. Behaviour & information technology, 41(3), 611-628.
    Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., Black, W., & Anderson, R. (2019). Multivariate data analysis (eighth). Cengage Learning EMEA.
    Harrigan, P., Evers, U., Miles, M. P., & Daly, T. (2018). Customer engagement and the relationship between involvement, engagement, self-brand connection and brand usage intent. Journal of Business Research, 88, 388-396.
    Hao, F., & Chon, K. K. S. (2022). Contactless service in hospitality: bridging customer equity, experience, delight, satisfaction, and trust. International Journal of Contemporary Hospitality Management, 34(1), 113-134.
    Hofstede, G. (2001). Culture's consequences: Comparing values, behaviors, institutions and organizations across nations: Sage publications.
    Hui, M. K., & Bateson, J. E. (1991). Perceived control and the effects of crowding and consumer choice on the service experience. Journal of Consumer research, 18(2), 174-184.
    Ivanov, S. H., Webster, C., & Berezina, K. (2017). Adoption of robots and service automation by tourism and hospitality companies. Revista Turismo & Desenvolvimento, 27(28), 1501-1517.
    Jiang, Z., & Benbasat, I. (2007). The effects of presentation formats and task complexity on online consumers' product understanding. MIS Quarterly, 31(3), 475-500.
    Jung, J. H., Yoo, J. J., & Arnold, T. J. (2017). Service climate as a moderator of the effects of customer-to-customer interactions on customer support and service quality. Journal of Service Research, 20(4), 426-440.
    Kamal, S. A., Shafiq, M., & Kakria, P. (2020). Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technology in Society, 60(0), 101-212.
    Kandampully, J., & Suhartanto, D. (2000). Customer loyalty in the hotel industry: The role of customer satisfaction and image. International Journal of Contemporary Hospitality Management, 12(6), 346-351.
    Kasilingam, D. L. (2020). Understanding the attitude and intention to use smartphone chatbots for shopping. Technology in Society, 62(0), 101-280.
    Kim, B., & Han, I. (2009). The role of trust belief and its antecedents in a community‐driven knowledge environment. Journal of the American Society for Information Science and Technology, 60(5), 1012-1026.
    Kumar, K. A., & Natarajan, S. (2020). An extension of the expectation confirmation model (ecm) to study continuance behavior in using e-health services. Innovative Marketing, 16(2), 1-15.
    Lam, T., Cho, V., & Qu, H. (2007). A study of hotel employee behavioral intentions towards adoption of information technology. International Journal of Hospitality Management, 26(1), 49-65.
    Lee, C. H., & Cranage, D. A. (2011). Personalisation–privacy paradox: The effects of personalisation and privacy assurance on customer responses to travel web sites. Tourism Management, 32(5), 987-994.
    Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191-204.
    Leso, B. H., & Cortimiglia, M. N. (2022). The influence of user involvement in information system adoption: An extension of tam. Cognition, Technology & Work, 24(2), 215-231.
    Li, M., Yin, D., Qiu, H., & Bai, B. (2021). A systematic review of ai technology-based service encounters: Implications for hospitality and tourism operations. International Journal of Hospitality Management, 95(0), 102-930.
    Liao, H., Toya, K., Lepak, D. P., & Hong, Y. (2017). Do they see eye to eye? Management and employee perspectives of high-performance work systems and influence processes on service quality. Journal of Applied Psychology, 102(6), 967-981.
    Lim, W. M., Jasim, K. M., & Das, M. (2024). Augmented and virtual reality in hotels: Impact on tourist satisfaction and intention to stay and return. International Journal of Hospitality Management, 116(0), 103-631.
    Lin, C.-P., & Bhattacherjee, A. (2008). Elucidating individual intention to use interactive information technologies: The role of network externalities. International Journal of Electronic Commerce, 13(1), 85-108.
    Lin, J. S. C., & Hsieh, P. l. (2006). The role of technology readiness in customers' perception and adoption of self‐service technologies. International Journal of Service Industry Management, 17(5), 497-517.
    Maklan, S., & Klaus, P. (2011). Customer experience: Are we measuring the right things? International Journal of Market Research, 53(6), 771-772.
    Marikyan, D., Papagiannidis, S., Rana, O. F., Ranjan, R., & Morgan, G. (2022). “Alexa, let’s talk about my productivity”: The impact of digital assistants on work productivity. Journal of Business Research, 142(0), 572-584.
    Marinova, D., de Ruyter, K., Huang, M.-H., Meuter, M. L., & Challagalla, G. (2017). Getting smart: Learning from technology-empowered frontline interactions. Journal of Service Research, 20(1), 29-42.
    Meuter, M. L., Ostrom, A. L., Roundtree, R. I., & Bitner, M. J. (2000). Self-service technologies: Understanding customer satisfaction with technology-based service encounters. Journal of Marketing, 64(3), 50-64.
    Mogaji, E., & Nguyen, N. P. (2024). Evaluating the emergence of contactless digital payment technology for transportation. Technological Forecasting and Social Change, 203(0), 123-378.
    Morosan, C., & DeFranco, A. (2016). It's about time: Revisiting utaut2 to examine consumers’ intentions to use nfc mobile payments in hotels. International Journal of Hospitality Management, 53(0), 17-29.
    Nadkarni, S., & Gupta, R. (2007). A task-based model of perceived website complexity. MIS Quarterly, 31(3) 501-524.
    Noone, B., & Robson, S. K. (2014). Using eye tracking to obtain a deeper understanding of what drives online hotel choice. Cornell University.
    Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460-469.
    Orden-Mejia, M., & Huertas, A. (2022). Analysis of the attributes of smart tourism technologies in destination chatbots that influence tourist satisfaction. Current Issues in Tourism, 25(17), 2854-2869.
    Parsa, H., & Cobanoglu, C. (2011). Building a model of commitment for generation y: An empirical study on e-travel retailers. Tourism Management, 32(4), 833-843.
    Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879.
    Purohit, S., Arora, R., & Paul, J. (2022). The bright side of online consumer behavior: Continuance intention for mobile payments. Journal of Consumer Behaviour, 21(3), 523-542.
    Rapp, A., Curti, L., & Boldi, A. (2021). The human side of human-chatbot interaction: A systematic literature review of ten years of research on text-based chatbots. International Journal of Human-Computer Studies, 151(0), 102-630.
    Ratna, S., Astuti, E. S., Utami, H. N., Rahardjo, K., & Arifin, Z. (2018). Characteristics of tasks and technology as a driver of task-technology fit and the use of the hotel reservation information system. VINE Journal of Information and Knowledge Management Systems, 48(4), 579-595.
    Reichheld, F. F., & Sasser, W. E. (1990). Zero defections: Quality comes to services. 1990, 68(5), 105-111.
    Schneider, B., White, S. S., & Paul, M. C. (1998). Linking service climate and customer perceptions of service quality: Tests of a causal model. Journal of Applied Psychology, 83(2), 150.
    Spreng, R. A., MacKenzie, S. B., & Olshavsky, R. W. (1996). A reexamination of the determinants of consumer satisfaction. Journal of Marketing, 60(3), 15-32.
    Tam, C., Santos, D., & Oliveira, T. (2020). Exploring the influential factors of continuance intention to use mobile apps: Extending the expectation confirmation model. Information Systems Frontiers, 22(0), 243-257.
    Tussyadiah, I. P., & Park, S. (2018). Consumer evaluation of hotel service robots. Paper presented at the Information and Communication Technologies in Tourism 2018: Proceedings of the International Conference in Jönköping, Sweden, January 24-26, 2018.
    Vandenbosch, B., & Ginzberg, M. J. (1996). Lotus notes® and collaboration: Plus ça change. Journal of Management Information Systems, 13(3), 65-81.
    Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315.
    Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
    Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
    Vessey, I. (1991). Cognitive fit: A theory‐based analysis of the graphs versus tables literature. Decision Sciences, 22(2), 219-240.
    Wilkinson, D., Alkan, Ö., Liao, Q. V., Mattetti, M., Vejsbjerg, I., Knijnenburg, B. P., & Daly, E. (2021). Why or why not? The effect of justification styles on chatbot recommendations. ACM Transactions on Information Systems (TOIS), 39(4), 1-21.
    Xia, Q., Chiu, T. K., Chai, C. S., & Xie, K. (2023). The mediating effects of needs satisfaction on the relationships between prior knowledge and self‐regulated learning through artificial intelligence chatbot. British Journal of Educational Technology, 54(4), 967-986.
    Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2017). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism Management, 58(0), 51-65.
    Zhang, C., Ma, S., Li, S., & Singh, A. (2021). Effects of customer engagement behaviors on action loyalty: moderating roles of service failure and customization. International Journal of Contemporary Hospitality Management, 33(1), 286-304.
    Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1996). The behavioral consequences of service quality. Journal of Marketing, 60(2), 31-46.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE