簡易檢索 / 詳目顯示

研究生: 李啟玄
Lee, Chi-Hsuan
論文名稱: 單層與雙層奈米碳系統的電子性質
Electronic Properties of Monolayer and Bilayer Nanocarbon Systems
指導教授: 林明發
Lin, Ming-Fa
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 113
中文關鍵詞: 碳微管奈米石墨帶單層石墨電子性質
外文關鍵詞: carbon nanotubes, graphene nanoribbon, monolayer graphene, electronic properties.
相關次數: 點閱:112下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單層與雙層奈米碳系統,例如單層與雙層有限長碳微管,奈米石墨帶-單層石墨混合系統,和碳微管-奈米石墨帶混合物,我們以緊束模型與第一原理計算來研究它們的電子性質。單層有限長碳微管的低能電子態由幾何結構與微管長度所主導,來自鋸齒狀碳微管的特殊局部化電子態可以被磁場與電場所調制。在單層與雙層有限長碳微管中的層間交互作用明顯影響在外場下低能電子態的變化。另一方面,內外層所引起的不同邊界結構也在電子性質中扮演一個重要的角色。至於奈米石墨帶週期性排列在單層石墨上的混合系統中,不同的奈米石墨帶寬度,週期,與堆疊方式被研究。經由層間交互作用,來自單層石墨的線性能帶會改變為拋物線能帶並且打開能隙,並且在態密度中顯露出近似一維特性的結構。此外,手椅狀碳微管放寬在鋸齒狀奈米石墨帶上的混合物,在考慮電子自旋的定位下,反鐵磁的結構是最穩定的。碳微管的位置關係到堆積方式並被詳細地研究。來自碳微管的線性交叉能帶會被層間交互作用破壞。移向奈米石墨帶邊界的碳微管會破壞反鐵磁中自旋向上與向下能帶的簡並。

    The electronic properties of monolayer and bilayer nanocarbon systems
    (single- and double-walled finite carbon nanotubes, ribbon-graphene hybrid systems, and carbon nanotube-nanoribbon hybrids) are studied within the tight-binding model, and first-principles calculations.
    The low-energy states of single-walled finite carbon nanotubes are predominated by the geometrical structure and tube length.
    The peculiar localized states of the zigzag nanotube could be modulated by the magnetic and electric fields.
    The intertube atomic hoppings in double-walled finite carbon nanotubes significantly influence the variations of the low energy states under the external fields.
    In addition, the different boundary structures induced by the inner and outer tube also play an important role in the electronic properties.
    As for the ribbon-graphene hybrid systems, the graphene nanoribbons are aligned on the single-layer graphene in a periodical manner.
    The band structures are investigated with different widths and periods of the ribbon, as well as the stacking type.
    The linear bands crossing at the Fermi level originated from the graphene change into the parabolic bands and open an energy gap owing to the interlayer interactions.
    These systems reveal the quasi-one-dimensional peaks in the density of states.
    After considering the spin orientation, the hybrids consisting of the armchair nanotube lying on the zigzag ribbon are more stable in the antiferromagnetic configurations.
    The nanotube location on the ribbon would be associated with the stacking arrangement and studied in detail.
    The interlayer interactions would also break the intersection of the linear band from the armchair carbon nanotube.
    The shifting of tube toward the ribbon edge would destroy the degeneracy of spin-up and spin-down states in the antiferromagnetic configuration.

    Abstract .................................................................................................................... 3 Chapter 1. Introduction ............................................................................................ 4 References .................................................................................................................10 Chapter 2. Electronic Structures of Finite Carbon Nanotubes under External Fields 2.1 Introduction ........................................................................................................ 16 2.2 Theoretical calculations ..................................................................................... 17 2.3 Electronic properties .......................................................................................... 19 2.4 Concluding remarks ........................................................................................... 27 References ................................................................................................................ 28 Chapter 3. Low-Energy Electronic Properties of Finite Double-Walled Carbon Nanotubes under External Fields 3.1 Introduction ........................................................................................................ 31 3.2 Electronic structure in a magnetic field ............................................................. 33 3.3 Low-energy electronic properties under the external fields .............................. 45 3.4 Summary ............................................................................................................ 53 References ................................................................................................................ 54 Chapter 4. Low-Energy Electronic Structures of Ribbon-Graphene Hybrid Systems 4.1 Introduction ........................................................................................................ 57 4.2 Electronic structure of zigzag ribbon-graphene hybrid systems ….................... 58 4.3 Electronic properties of armchair ribbon-graphene hybrid systems .................. 71 4.4 Conclusion ......................................................................................................... 83 References ................................................................................................................ 85 Chapter 5. Electronic Properties of Carbon Nanotube-Nanoribbon Hybrids 5.1 Introduction ........................................................................................................ 88 5.2 the DFT calculations for the nanotube-nanoribbon hybrids .............................. 89 5.3 Electronic properties .......................................................................................... 94 5.4 Concluding remarks ........................................................................................... 101 References ................................................................................................................ 103 Chapter 6. Summary and future research ................................................................ 106

    References
    Chapter 1.
    [1] M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30 (1981) 139.
    [2] D. E. Soule, Phys. Rev. 112 (1958) 698.
    [3] G. Li and E. Y. Andrei, Nat. Phys. 3 (2007) 623.
    [4] P. R. Wallace, Phys. Rev. 71 (1947) 622.
    [5] J. C. Charlier, J.-P. Michenaud, and X. Gonze, Phys. Rev. B 46 (1992) 4531.
    [6] J. C. Charlier, J.-P. Michenaud, X. Gonze, and J.-P. Vigneron, Phys. Rev. B 44 (1991) 13237.
    [7] F. L. Shyu and M. F. Lin, J. Phys. Soc. Jpn. 69 (2000) 3781.
    [8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306 (2004) 666.
    [9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
    Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438 (2005) 197.
    [10] C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108 (2004) 19912.
    [11] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science 312 (2006) 1191.
    [12] Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Nature (London) 438 (2005) 201.
    [13] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Nat. Phys. 2 (2006) 177.
    [14] B. Partoens and F. M. Peeters, Phys. Rev. B 74 (2006) 075404.
    [15] E. McCann, Phys. Rev. B 74 (2006) 161403(R).
    [16] S. B. Trickey, F. Müller-Plathe, and G. H. F. Diercksen, Phys. Rev. B 45 (1992) 4460.
    [17] S. Latil and L. Henrard, Phys. Rev. Lett. 97 (2007) 036803.
    [18] M. Murakami, S. Iijima, and S. Yoshimura, J. Appl. Phys. 60 (1986) 3856.
    [19] M. Yudasaka, Y. Tasaka, M. Tanaka, H. Kamo, Y. Ohki, and S. Usami, Appl. Phys. Lett. 64 (1994) 3237.
    [20] B. L. V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, A. M. Rao, P. C. Eklund, Kyoichi Oshida, and Morinobu Endo, Phys. Rev. B 62 (2000) 11209.
    [21] L. Tapasztó, G. Dobrik, Ph. Lambin, and L. P. Biró, Nature Nanotech. 3 (2008) 397.
    [22] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature (London) 458 (2009) 872.
    [23] L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature (London) 458 (2009) 877.
    [24] K. Nakada, M Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54 (1996) 17954.
    [25] M. Ezawa, Phys. Rev. B 73 (2006) 045432.
    [26] Y.-W Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97 (2003) 216803.
    [27] V. Barone, O. Hod, and G. E. Scuseria, Nano Lett. 6 (2006) 2749.
    [28] L. Yang, C.-H. Park, Y.-W Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 99 (2007) 186801.
    [29] S. Okada, Phys. Rev. B 77 (2008) 041408(R).
    [30] M. Fujita, K. Wakabayashi, K Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65 (1996) 1920.
    [31] N. M. R. Peres, A. H. Castro Neto, and F. Guinea, Phys. Rev. B 73 (2006) 195411.
    [32] E. H. Lieb, Phys. Rev. Lett. 62 (1989) 1201.
    [33] Y.-W Son, M. L. Cohen, and S. G. Louie, Nature (London) 444 (2006) 347.
    [34] L. Pisani, J. A. Chan, B. Montanari, and N. M. Harrison, Phys. Rev. B 75 (2007) 064418.
    [35] S. Iijima, Nature (London) 354 (1991) 56.
    [36] J. W. Mintwire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett. 68 (1992) 631.
    [37] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78 (1997) 1932
    [38] F. L. Shyu and M. F. Lin, J. Phys. Soc. Jpn. 65 (2002) 505.
    [38] A. Rubio, D. Sánchez-Portal, E. Artacho, P. Ordeján, and J. M. Soler, Phys. Rev. Lett. 82 (1999) 3520.
    [39] J. Wu, W. Duan, B. L. Gu, J. Z. Yu, and Y. Kawazoe, Appl. Phys. Lett. 71 (2000) 2554.
    [40] L. C. Venema, J. W. G. Wildöer, J. W. Janssen, S. J. Tans, L. J. Hinne, T. Tuinstra, L. P. Kouwenhoven, and C. Dekker, Science 283 (1999) 52.
    [41] L. C. Venema, J. W. G. Wildöer, H. L. J. T. Tuinstra, C. Dekker, A. G. Rinzler, and R. E. Smalley, Appl. Phys. Lett. 71 (1997) 2629.
    [42] S. J. Tans, M. H. Devoret, R. J. A. Groeneveld, and C. Dekker, Nature 394 (1998) 761.
    [43] J. Nygºard, D. H. Cobden, and P. E. Lindelof, Nature 408 (2000) 342.
    [44] D. H. Cobden and J. Nygård, Phys. Rev. Lett. 89 (2002) 046803.
    [45] P. Jarillo-Herrero, S. Sapmaz, C. Dekker, L. P. Kouwenhoven, and H. S. J. Van der Zant, Nature 429 (2004) 389.
    [46] S. Moriyama, T. Fuse, M. Suzuki, Y. Aoyagi, and K. Ishibashi, Phys. Rev. Lett. 94 (2005) 186806.
    [47] X. Sun, S. Zaric, D. Daranciang, K. Welsher, Y. Lu, X. Li, and H. Dai, J. Am. Chem. Soc. 130 (2008) 6551.
    [48] R. A. Jishi, J. Bragin, and L. Lou, Phys. Rev. B 59 (1999) 9862.
    [49] Y. Matsuo, K. Tahara, and E. Nakamura, Org. Lett. 5 (2003) 3181.
    [50] R. B. Chen, B. J. Lu, C. C. Tsai, C. P. Chang, F. L. Shyu, and M. F. Lin, Carbon 42 (2004) 2873.
    [51] R. B. Chen, C. P. Chang, J. S. Hwang, D. S. Chuu, and M. F. Lin, J. Phys. Soc. Jpn. 74 (2005) 1404.
    [52] R. B. Chen, C. P. Chang, F. L. Shyu, J. S. Hwang, and M. F. Lin, Carbon 42 (2004) 531.
    [53] T. Ohta, A. Bostwick, T. Seyller, K, Horn, and E. Rotenberg, Science 313 (2006) 951.
    [54] S. Latil and L. Henrard, Phys. Rev. Lett. 97 (2006) 036803.
    [55] M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarucha, Nature Nanotech. 4 (2009) 383.
    [56] Y. H. Ho, C. P. Chang, F. L. Shyu, R. B. Chen, S. C. Chen, and M. F. Lin, Carbon 42 (2004) 3159.
    [57] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, and R. E. Smalley, Science 273 (1996) 483.
    [58] T. S. Li, S. C. Chang, J. Y. Lien, and M. F. Lin, Nanotechnology 19 (2008) 105703.
    [59] M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarucha, Nature Nanotech. 4 (2008) 383.
    [60] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J. Appl. Phys. 73 (1993) 494.
    [61] Y. H. Ho, C. P. Chang, F. L. Shyu, R. B. Chen, S. C. Chen, and M. F. Lin, Carbon 42 (2004) 3159.
    [62] G. W. Ho, Y. H. Ho, T. S. Li, C. P. Chang, and M. F. Lin, Carbon 44 (2006) 2323.
    [63] Y. H. Ho, G. W. Ho, S. C. Chen, J. H. Ho, and M. F. Lin, Phys. Rev. B 76 (2007) 115422.
    [64] Y. K. Kwon and D. Tománek, Phys. Rev. B 58 (1998) R16001.

    Chapter 2.
    [1] Iijima S 1991 Nature (London) 354, 56
    [2] Rubio A, Sánchez-Portal D, Artacho E, Ordeján P and Soler J M 1999 Phys. Rev. Lett. 82, 3520
    [3] Venema L C, Wildöer J W G, Janssen J W, Tans S J, Hinne L J, Tuinstra T,
    Kouwenhoven L P and Dekker C 1999 Science 283, 52
    [4] Tans S J, Devoret M H, Groeneveld R J A and Dekker C 1998 Nature 394 761
    [5] Nygºard J, Cobden D H and Lindelof P E 2000 Nature 408, 342
    [6] Cobden D H and Nygård J 2002 Phys. Rev. Lett. 89, 046803
    [7] Jarillo-Herrero P, Sapmaz S, Dekker C, Kouwenhoven L P and Van der Zant H S J 2004 Nature 429, 389
    [8] Moriyama S, Fuse T, Suzuki M, Aoyagi Y and Ishibashi K 2005 Phys. Rev. Lett. 94, 186806
    [9] Jishi R A, Bragin J and Lou L 1999 Phys. Rev. B 59, 9862
    [10] Matsuo Y, Tahara K and Nakamura E 2003 Org. Lett. 5, 3181
    [11] Chen R B, Lu B J, Tsai C C, Chang C P, Shyu F L and Lin M F 2004 Carbon 42, 2873
    [12] Chen R B, Chang C P, Hwang J S, Chuu D S and Lin M F 2005 J. Phys. Soc. Jpn. 74, 1404
    [13] Chen R B, Chang C P, Shyu F L, Hwang J S and Lin M F 2004 Carbon 42, 531
    [14] Kim P and Lieber C M 1999 Science 286, 2148
    [15] Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J and Dekker C 1997 Nature 386 474
    [16] Tans S J, Verschueren A R M and Dekker C 1998 Nature 393 49
    [17] Yao Z, Postma H W Ch, Balents L and Dekker C 1999 Nature 402 273
    [18] Zhou X, Chen H and Zhong-can O Y 2001 J. Phys.: Condens. Matter 13 L635
    [19] Li Y, Rotkin S V and Ravailoli U 2003 Nano. Lett. 3 183
    [20] Pacheco M, Barticevic Z, Rocha C G and Latgé A 2005 J. Phys.: Condens. Matter 17 5839
    [21] Li T S and Lin M F 2006 Phys. Rev. B 73 075432
    [22] Rocha C G, Pacheco M, Barticevic Z and Latgé A 2004 Phys. Rev. B 70 233402
    [23] Ajiki H and Ando T 1993 J. Phys. Soc. Jpn. 62 1255
    [24] Ajiki H and Ando T 1993 J. Phys. Soc. Jpn. 62 2470
    [25] Ajiki H and Ando T 1995 J. Phys. Soc. Jpn. 64 4382
    [26] Lin M F and Shung K W K 1995 Phys. Rev. B 52 8423
    [27] Shyu F L, Chang C P, Chen R B, Chiu C W and Lin M F 2003 Phys. Rev. B 67 045405
    [28] Chiu C W, Shyu F L, Chang C P, Chen R B and Lin M F 2003 Phys. Lett. A 311 53
    [29] Chiu C W, Chang C P, Shyu F L, Chen R B and Lin M F 2003 Phys. Rev. B 67 165421
    [30] Kane C L and Mele E J 1997 Phys. Rev. Lett. 78 1932

    Chapter 3.
    [1] Iijima S 1991 Nature (London) 354 56
    [2] Venema L C, Wildöer J W G, Tuinstra H L J T, Dekker C, Rinzler A G and Smalley R E 1997 Appl. Phys. Lett. 71 2629
    [3] Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J and Dekker C 1997 Nature 386 474
    [4] Venema L C, Wildöer J W G, Janssen J W, Tans S J, Hinne L J, Tuinstra T, Kouwenhoven L P and Dekker C 1999 Science 283 52
    [5] Nygård J, Cobden D H and Lindelof P E 2000 Nature 408 342
    [6] Cobden D H and Nygºard J 2002 Phys. Rev. Lett. 89 046803
    [7] Jarillo-Herrero P, Sapmaz S, Dekker C, Kouwenhoven L P and Van der Zant H S J 2004 Nature 429 389
    [8] Moriyama S, Fuse T, Suzuki M, Aoyagi Y and Ishibashi K 2005 Phys. Rev. Lett. 94 186806
    [9] Rubio A, Sánchez-Portal D, Artacho E, Ordeján P and Soler J M 1999 Phys. Rev. Lett. 82 3520
    [10] Jishi R A, Bragin J and Lou L 1999 Phys. Rev. B 59 9862
    [11] Matsuo Y, Tahara K and Nakamura E 2003 Org. Lett. 5 3181
    [12] Chen R B, Lu B J, Tsai C C, Chang C P, Shyu F L and Lin M F 2004 Carbon 42 2873
    [13] Chen R B, Chang C P, Shyu F L, Hwang J S and Lin M F 2004 Carbon 42 531
    [14] Chen R B, Chang C P, Hwang J S, Chuu D S and Lin M F 2005 J. Phys. Soc. Jpn. 74 1404
    [15] Lee C H, Chen R B, Li T S, Chang C P and Lin M F 2006 J. Phys.: Condens. Matter 18 9427
    [16] Saito R, Dresselhaus G and Dresselhaus M S 1993 J. Appl. Phys. 73 494
    [17] Ho Y H, Chang C P, Shyu F L, Chen R B, Chne S C and Lin M F 2004 Carbon 42 3159
    [18] Ho G W, Ho Y H, Li T S, Chang C P and Lin M F 2006 Carbon 44 2323
    [19] Ho Y H, Ho G W, Chen S C, Ho J H and Lin M F 2007 Phys. Rev. B 76 115422
    [20] Kwon Y K and Tománek D 1998 Phys. Rev. B 58 R16001
    [21] Ajiki H and Ando T 1993 J. Phys. Soc. Jpn. 62 1255
    [22] Ajiki H and Ando T 1993 J. Phys. Soc. Jpn. 62 2470
    [23] Ajiki H and Ando T 1995 J. Phys. Soc. Jpn. 64 4382
    [24] Lin M F and Shung K W K 1995 Phys. Rev. B 52 8423
    [25] Shyu F L, Chang C P, Chen R B, Chiu C W and Lin M F 2003 Phys. Rev. B 67 045405
    [26] Stojetz B, Miko C, Forró L and Strunk C 2005 Phys. Rev. Lett. 94 186802
    [27] Strunk C, Stojetz B and Roche S 2006 Semicond. Sci. Technol. 21 S38
    [28] Stojetz B, Roche S, Triozon F, Forró L and Strunk C 2007 New J. Phys. 9 56
    [29] Zaric S et al 2004 Science 304 1129
    [30] Mortimer I B, Li L -J, Taylor R A, Rikken G L J A, Portugall and Nicholas R J 2003 Phys. Rev. B 76 085404
    [31] X. Zhou, H. Chen, O. Y. Zhong-can 2001 J. Phys.: Condens. Matter 13 L635
    [32] Y. Li, S. V. Rotkin, U. Ravaioli 2003 Nano Lett. 3 183
    [33] M. Pacheco, Z. Barticevic, C. G. Rocha, A Latgé 2005 J. Phys.: Condens. Matter 17 5839
    [34] G. W. Ho, Y. H. Ho, T. S. Li, C. P. Chang, M. F. Lin 2006 Carbon 44 2323
    [35] Ahn K -H, Kim Y -H, Wiersig J and Chang K J 2003 Phys. Rev. Lett. 90 026601

    Chapter 4.
    [1] M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30 (1981) 139.
    [2] D. E. Soule, Phys. Rev. 112 (1958) 698.
    [3] G. Li and E. Y. Andrei, Nat. Phys. 3 (2007) 623.
    [4] P. R. Wallace, Phys. Rev. 71 (1947) 622.
    [5] J. C. Charlier, J.-P. Michenaud, and X. Gonze, Phys. Rev. B 46 (1992) 4531.
    [6] J. C. Charlier, J.-P. Michenaud, X. Gonze, and J.-P. Vigneron, Phys. Rev. B 44 (1991) 13237.
    [7] F. L. Shyu and M. F. Lin, J. Phys. Soc. Jpn. 69 (2000) 3781.
    [8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306 (2004) 666.
    [9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438 (2005) 197.
    [10] C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108 (2004) 19912.
    [11] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science 312 (2006) 1191.
    [12] Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Nature (London) 438 (2005) 201.
    [13] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Nat. Phys. 2 (2006) 177.
    [14] B. Partoens and F. M. Peeters, Phys. Rev. B 74 (2006) 075404.
    [15] E. McCann, Phys. Rev. B 74 (2006) 161403(R).
    [16] S. B. Trickey, F. Müller-Plathe, and G. H. F. Diercksen, Phys. Rev. B 45 (1992) 4460.
    [17] S. Latil and L. Henrard, Phys. Rev. Lett. 97 (2007) 036803.
    [18] M. Murakami, S. Iijima, and S. Yoshimura, J. Appl. Phys. 60 (1986) 3856.
    [19] M. Yudasaka, Y. Tasaka, M. Tanaka, H. Kamo, Y. Ohki, and S. Usami, Appl. Phys. Lett. 64 (1994) 3237.
    [20] B. L. V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, A. M. Rao, P. C. Eklund, Kyoichi Oshida, and Morinobu Endo, Phys. Rev. B 62 (2000) 11209.
    [21] L. Tapasztó, G. Dobrik, Ph. Lambin, and L. P. Biró, Nature Nanotech. 3 (2008) 397.
    [22] K. Nakada, M Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54
    (1996) 17954.
    [23] F. L. Shyu and M. F. Lin, J. Phys. Soc. Jpn. 69 (2000) 3529.
    [24] Y.-W Son, M. L. Cohen, and S. G. Louie, Nature (London) 444 (2006) 347. 86
    [25] Y.-W Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97 (2003) 216803.
    [26] T. Wassmann, A. P. Seitsonen, A. M. Saitta, M. Lazzeri, and F. Mauri, Phys. Rev. Lett. 101 (2008) 096402.
    [27] Eduardo V. Castro, N. M. R. Peres, and J. M. B. Lopes dos Santos, Europhys. Lett. 84 (2008) 17001.
    [28] C. P. Puls, N. E. Staley, and Y. Liu, arXiv:0809.1392 (unpublished).

    Chapter 5
    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306 (2004) 666.
    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438 (2005) 197.
    [3] C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108 (2004) 19912.
    [4] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science 312 (2006) 1191.
    [5] Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Nature (London) 438 (2005) 201.
    [6] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Nat. Phys. 2 (2006) 177.
    [7] M. Murakami, S. Iijima, and S. Yoshimura, J. Appl. Phys. 60 (1986) 3856.
    [8] M. Yudasaka, Y. Tasaka, M. Tanaka, H. Kamo, Y. Ohki, and S. Usami, Appl. Phys. Lett. 64 (1994) 3237.
    [9] B. L. V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, A. M. Rao, P. C. Eklund, Kyoichi Oshida, and Morinobu Endo, Phys. Rev. B 62 (2000) 11209.
    [10] L. Tapasztó, G. Dobrik, Ph. Lambin, and L. P. Biró, Nature Nanotech. 3 (2008) 397.
    [11] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature (London) 458 (2009) 872.
    [12] L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature (London) 458 (2005) 877.
    [13] K. Nakada, M Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54 (1996) 17954.
    [14] M. Ezawa, Phys. Rev. B 73 (2006) 045432.
    [15] Y.-W Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97 (2003) 216803.
    [16] V. Barone, O. Hod, and G. E. Scuseria, Nano Lett. 6 (2006) 2749.
    [17] L. Yang, C.-H. Park, Y.-W Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 99 (2007) 186801.
    [18] S. Okada, Phys. Rev. B 77 (2008) 041408(R).
    [19] M. Fujita, K. Wakabayashi, K Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65 (1996) 1920.
    [20] Y.-W Son, M. L. Cohen, and S. G. Louie, Nature (London) 444 (2006) 347.
    [21] L. Pisani, J. A. Chan, B. Montanari, and N. M. Harrison, Phys. Rev. B 75 (2007) 064418.
    [22] S. Iijima, Nature (London) 354 (1991) 56.
    [23] T. Ohta, A. Bostwick, T. Seyller, K, Horn, and E. Rotenberg, Science 313 (2006) 951.
    [24] S. Latil and L. Henrard, Phys. Rev. Lett. 97 (2006) 036803.
    [25] M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarucha, Nature Nanotech. 4 (2009) 383.
    [26] Y. H. Ho, C. P. Chang, F. L. Shyu, R. B. Chen, S. C. Chen, and M. F. Lin, Carbon 42 (2004) 3159.
    [27] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, and R. E. Smalley, Science 273 (1996) 483.
    [28] T. S. Li, S. C. Chang, J. Y. Lien, and M. F. Lin, Nanotechnology 19 (2008) 105703.
    [29] J. P. Perdew, K, Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (2007) 3865.
    [30] Y. Baskin and L. Mayer, Phys. Rev. 100 (1955) 544.
    [31] A. N. Kolmogorov and V. H. Crespi, Phys. Rev. B 71 (2006) 235415.
    [32] J,-C. Charlier, X. Gonze, J.-P, Michenaud, Europhys. Lett. 29 (1995) 43.
    [33] Á. Szabados, L. P. Biró, and P. Surján, Phys. Rev. B 73 (2006) 195404.

    下載圖示 校內:2010-07-21公開
    校外:2010-07-21公開
    QR CODE