| 研究生: |
李奇 Lee, Chi |
|---|---|
| 論文名稱: |
異向性反平面裂紋體塑性區大小之評估 Estimation of Plastic Zone Size for Anisotropic Anti-plane Crack Problem |
| 指導教授: |
宋見春
Sung, Jen-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 異向性材料 、奇異積分方程式 、數值方法 、差排作用 、反平面 、裂紋尖端應力強度因子 、塑性區 |
| 外文關鍵詞: | Anisotropic material, Singular integral equation, Numerical method, Dislocation action, Crack tip stress intensity factor, plastic zone size |
| 相關次數: | 點閱:125 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在研究異向性反平面裂紋體塑性區大小之評估,以異向性Stroh公式為基礎首先推演格林函數,並以連續差排的觀念模擬裂縫行為,建立以差排密度函數為未知數的奇異積分方程式,再以Gerasoulis數值方法求解未知差排密度函數,進而推導出應力強度因子,塑性區大小乃基於Dugdale’s Model理論進行評估,針對不同邊界,異向性程度對裂紋塑性區大小之影響提供了數值結果。
The aim of this study is to estimate the plastic zone size of anisotropic anti-plane cracked problem. The Green function is introduced based on the Stroh formalism which deals with anisotropic elastic materials. By simulating the behavior of cracks by a continuous dislocation density, the singular integral equation for the problem with dislocation density as the unknown function is developed. The unknown dislocation function is determined by Gerasoulis’ numerical method and the corresponding stress intensity factor are directly obtained. The plastic zone size is estimated by Dugdale’s Model. Numerical results of the plastic zone size are presented to see the effects of the different boundary conditions as well as the degree of anisotropic of the materials.
1. M. Abdulkawi, Z. K. Eshkuvatov, N. M. A. Nik Long, A Note on the Numerical Solution of Singular Integral Equation of Cauchy type. World Academy of Science, Engineering and Technology 33, 2009.
2. Beghini, M., Bertini, L. and Fortanari, V., Stress Intensity Factors for an Inclined Edge Crack in a Semiplane. Engrg. Fracture Mechanics 62, 607-613,1999.
3. Becker, W. and Gross, D. About the mode-III Dugdale crack solution. Int. J. Fract. Mech. 34, 65-70,1987.
4. Dugdale, D.S., Yielding of steel sheets containing slits. J. Mech. Phys.Solids.8, 100-104., 1960.
5. Esheby,J. D. ,Read, W. T. and Shockley, W., Anisotropic Elasticity with Applications to Dislocation Theory .Acta Metall 1,251-259,1953.
6. Erdogan,F.,Stress Intensity Factor .ASME J.Appl.Mech 50,992-1002,1983.
7. Gerasoulis, A., The Use of Piecewise Quadratic Polynomials for the Solution of Singular Integral Equations of Cauchy Type. Comput. Math. With Applications. 8,15-22,1982.
8. Gdoutis, E.E., Fracture Mechanics criteria and application. Dordrecht, Kluwer,1990.
9. Higadhida, Y. and Kamada, K., Stress Fields around a Crack Lying Parallel to a Free Surface. Int J. Fracture 19,39-52,1982.
10. Santonu Ghosh and Arun R. Rao, Dugdale-Barenblatt model. Indian Institute of Science, Bangalore, India-560012,2008.
11. Stroh, A.N., Dislocations and Cracks on Anisotropic Elasticity. Philos. Mag 7,625-646,1958.
12. Sung, J.C. and Liou, J.Y., An Internal Crack in a Half-Plane Solid with Clamped Boundary. Comput. Methods Appl. Engrg 121,361-372,1994.
13. Sung, J.C. and Liou, J.Y., Analysis of a Crack Embedded in a Linear Elastic Half-Plane Solid. ASME J. Appl. Mech 62,78-86,1995.
14. J. Zhuang, D. K. Yi and Z. M. Xiao, Elastic-plastic analysis of a sub-interface crack in a coating-substrate composite. International Journal of Solids and Structures, Volume 50, issue 2 (January 15, 2013), p. 414-422. ISSN: 0020-7683 DOI: 10 .1016/j.ijsolstr.2012.10.018.
15. Ting, T.C.T., Explicit Solution and Invariance of the Singularities at an Interface Crack in Anisotropic Composites. Int J. Solids Structure 22, 965-983,1986.
16. Ting, T.C.T. and Barnett, D.M., Image Force on Line Dislocations in Anisotropic Elastic Half-Spaces with a Fixed Boundary. Int J. Solids Struc 30, 3, 313-323,1993.
17. Ting, T.C.T., Anisotropic Elasticity : Theory and Applications. Oxford University Press, New York,1996.
18. Ting, T.C.T., Green’s Functions for a Half-Space and Two Half-Spaces Bonded to a Thin Anisotropic Elastic Layer. ASME J. Appl. Mech 75/051103-1,2008.
19. 劉鈞耀,雙層異向性材料介面附近裂紋之分析,國立成功大學土木工程研究所博士論文,1994.
20. 周志羽,裂紋與異質物互制之反平面問題解析,國立成功大學土木工程研究所碩士論文,2004.
21. 曾偉誌,含彈性薄層之半平面異向性裂紋體之研究,國立成功大學土木工程研究所碩士論文,2012.