| 研究生: |
巫立堯 Wu, Li-Yao |
|---|---|
| 論文名稱: |
電極介面對共軛有機分子元件磁電導效應之影響 Electrode interface to the magneto conductance responses in the conjugated molecules diodes |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 五環素 、紅螢烯 、電極介面 、磁電導 |
| 外文關鍵詞: | Pentacene, Rubrene, Magnetoconductance, Electrode interface |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究改變電極介面對磁電導效應之影響。由於有機磁電導效應來源主要與激發態有關,而電極介面會影響元件內部激發態,因此,我們使用了LiF/Al、BCP/Al、Ca/Al,三種具有不同特性之電極介面來製作元件,且發現五環素(Pentacene)與紅螢烯(Rubrene)兩者磁電導特性相似,但其磁電導機制來源截然不同,而改變電極介面只能影響MC ratio大小。接著我們摻雜C60,發現只有Pentacene元件中會產生CT Complex,而改變電極介面除了會影響內建電場大小以及電荷傳遞及收集外,也會影響激發態之exchange energy,進而改變磁電導曲線寬窄,但並不會對磁電導來源機制有太大之影響。
We have investigated the effect of electrode interface to the magneto conductance (MC) responses in the conjugated molecules diodes. Since Magnetic-field effects (MFEs) are came frome excited state of organic material, and excited state will be affect by different electrodes. Thus, we use three kinds of electrode interfaces to manufacture our devices. We found that both Pentacene and Rubrene device shows the similar MC response, but they are come from different mechanisms. In addition, change electrode interface only affect the MC ratio magnitude. Furthermore, we doping C60 to our devices and found that CT complex only appear at Pentacene device. Change electrode interface. In addition to change the built-in potential of device, the exchange energy of excited state will be affected too. As a result, the MC magnitude and width will be affected by different electrode interfaces.
[1] M. Pope, “Electroluminescence in Organic Crystals,” J. Chem. Phys. 38, 2043(1963).
[2] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. Macdiarmid, “Electrical conductivity in doped polyacetylene,” Phys. Rev. Lett. 39, 1098 (1977).
[3] A. Köhler, J. S. Wilson, and R. H. Friend, “Fluorescence and phosphorescence in organic materials,” Adv. Mater. 14, 701 (2002).
[4] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121 (1999).
[5] M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, K. J. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells,” Adv. Mater. 20, 2116 (2008).
[6] D. Mühlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884 (2006).
[7] D. Braga, and G. Horowitz, “Hige-performance organic field-effect transistors,” Adv. Mater. 21, 1473 (2009).
[8] J. Cornil, J. L. Brédas, J. Zaumseil, and H. Sirringhaus, “Ambipolar transport in organic conjugated materials,” Adv. Mater. 19, 1791 (2007).
[9] Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, “Giant 107
magnetoresistancein organic spin-valves,” Nature 427, 821 (2004).
[10] R. C. Johnson, R. E. Merrifield, P. Avakian, and R. B. Flippen, “Effects of magnetic fields on the mutual annihilation of triplet Excitons in molecular crystals.” Phys. Rev. Lett. 19, 285 (1967).
[11] V. Ern and R. E. Merrifield, “Magnetic field effect on triplet Exciton quenching in organic crystals.” Phys. Rev. Lett. 21, 609–611 (1968).
[12] M. Pope, and C. E. Swenberg, “Electronic processes in organic crystals,” 2nd edition, Oxford university press, ISBN 978-0-19-512963-2 (1999).
[13] U. E. Steiner, and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena. Re,” Chemv. 89, 51 (1989)
[14] E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, and H. H. Horhold, “Polaron-pair generatio in poly(phenylene vinylenes),” Phys. Rev. B 46, 9320 (1992)
[15] J. Kalinowski, J. Szmytkowski, and W. Stampor, “Magnetic hyperfine modulation of charge photogeneratio in solid films of Alq3,” Chem. Phys. Lett. 378, 380 (2003).
[16] J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380, 710 (2003).
[17] Ö. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Köhler, M. K. Al-Suti, and M. S. Khan, “Large magnetoresistance in nonmagnetic π–conjugated semiconductor thin film devices,” Phys. Rev. B 72, 205202 (2005).
[18] Y. Sheng, T. D. Nguyen, G. Veeraraghavan, Ö. Mermer, M. Wohlgenannt, S. Qiu, U. Scherf, “Hyperfine interaction and magnetoresistance in
108
organic semiconductors,” Phys. Rev. B 74, 045213 (2006)
[19] B. Hu, and Y. Wu, “Tuning magnetoresistance between positive and negative values in organic semiconductors,” Nat. Mater. 6,985 (2007).
[20] B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21, 1500 (2009).
[21] N. J. Rolfe, M. Heeney, P. B. Wyatt, A. J. Drew, T. Kreouzis, and W. P. Gillin, “Elucidating the role of hyperfine interactions on organic magnetoresistance using deuterated aluminium tris(8-hydroxyquinoline),” Phys. Rev. B 80, 241201R (2009).
[22] J. Y. Song, N. Stingelin, A. J. Drew, T. Kreouzis, and W. P. Gillin, “Effect of excited states and applied magnetic fields on the measured hole mobility in an organic semiconductor,” Phys. Rev. B. 82.085205 (2010).
[23] P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M.Wohlgenannt, “Bipolaron mechanism for organic magnetoresistance,” Phys. Rev. Lett. 99, 216801 (2007).
[24] S. Gasiorowicz, “Quantum physics, 3rd edition,” Wiley international Edition, ISBN 0-471-42945-7.
[25] D. J. Griffiths, “Introduction to Quantum Mechanics, 2nd edition,” Prentice Hall, ISBN 0-13-111892-7.
[26] R. Eisberg, and R. Resnick, “Quantum physics of atoms, molecules, solids, nuclei, and particles”, 2nd edition, Wiley press, ISBN 0-471-87373-X (1985)
[27] A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, and S. Navaratnam, “Triplet energies of π–conjugated polymers,” Phys. Rev. Lett. 86, 1358 (2001).
109
[28] A. Köhler, and D. Beljonne, “The singlet-triplet exchange energy in conjugated polymers,” Adv. Funct. Mater. 14, 11 (2004).
[29] A. Kadashchuk, A. Vakhnin, I. Blonski, D. Beljonne, Z. Shuai, J. L. Brédas, V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Singlet-triplet splitting of geminate electron-hole pairs in conjugated polymers,” Phys. Rev. Lett. 93, 066803 (2004).
[30] B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21, 1500 (2009).
[31] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electro- phosphorescence,” Appl. Phys. Lett. 75, 4 (1999).
[32] M. A. Baldo, and S. R. Forrest, “Transient analysis of organic electro- phosphorescence: I. Transient analysis of triplet energy transfer,” Phys. Rev. B 62, 10958 (2000).
[33] A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, and S. Navaratnam, “Triplet energies of π–conjugated polymers,” Phys. Rev. Lett. 86, 1358 (2001).
[34] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy,” J. Am. Chem. Soc. 130, 3030 (2008).
[35] Z. Xu, and B. Hu, “Photovoltaic processes of Singlet and triplet excited states in organic solar cells,” Adv. Mater. 18, 2611–2617 (2008).
[36] S. Singh, W. J. Jones, W. Siebrand, B. P. Stoicheff, and W. G. Schneider,
110
“Laser generatio of Excitons and fluorescence in Anthracene crystals,” Chem. Phys. Lett. 42, 330 (1965).
[37] M. B. Smith and J. Michl, “Singlet fission, ” Chem. Rev. Lett. 110, 6891–6936 (2010).
[38] G. B. Piland, J. J. Burdett, D. Kurunthu, and C. J. Bardeen, “Magnetic field effects on Singlet fission and fluorescence decay dynamics in amorphous Rubrene,” Chem. Phys. C Lett. 117, 1224–1236 (2013).
[39] R. E. Merrifield, “Theory of magnetic field effects on the mutual annihilation of triplet Excitons,” Chem. Phys. Lett. 48, 4318 (1968).
[40] T. H. Lee, T. F. Guo, J. C. A. Huang, and T. C. Wen. “Modulations of photoinduced magnetoconductance for polymer diodes,” Appl. Phys. Lett. 92, 153303 (2008).
[41] T. H. Lee, J. H. Li, W. S. Huang, B. Hu, J. C. A. Huang, T. F. Guo, and
T. C. Wen. “Magnetoconductance responses in organic charge-transfer-
complex molecules,” Appl. Phys. Lett. 99, 073307 (2011).
[42] W. S. Huang, Z. R. Xu, K.-C. Chen, T. F. Guo, J. C. A. Huang, and T. C. Wen, “Modulations in line shapes of magnetoconductance curves for diodes of pentacene:Fullerene charge transfer complexes,” Org. Electron. 15, 3076 (2014).
[43] H. Zang, Z. Xu, and B. Hu, “Magneto-optical investigations on the formation and dissociation of intermolecular charge-transfer complexes at donor-acceptor interfaces in bulk-heterojunction organic solar cells,” J. Phys. Chem. B 114, 5704 (2010).
[44] H. Zang, I. N. Ivanov, and B. Hu, “Magnetic studies of photovoltaic 111
processes in organic solar cells,” IEEE J. Sel. Top. Quantum Electron. 16, 1801 (2010).
[45] M. Li, H. Wang, L. He, H. Zang, H. Xu, and B. Hu, “Optically tunable spin-exchange energy at donor: Acceptor interfaces in organic solar cells,” Appl. Phys. Lett. 105, 023302 (2014).
[46] H. Zang, L. Yan, M. Li, Z. Gai, M. Wang, and B. Hu, “Magneto-Dielectric effects induced by optically-generated intermolecular charge-transfer states in organic Semiconducting materials,” Sci. Rep. 3, (2013).
[47] Y. Zhang, Y. Lei, Q. Zhang, and Z. Xiong, “Thermally activated singlet exciton fission observed in rubrene doped organic films,” Org. Electron. 15, 577, (2014).
校內:2021-07-19公開