簡易檢索 / 詳目顯示

研究生: 黃景蜂
Huang, Jing-feng
論文名稱: 具有倒置電極之氮化鎵系列發光二極體特性分析
Characterizations of P-side Down GaN-based LEDs
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 58
中文關鍵詞: 氮化鎵發光二極體倒置電極
外文關鍵詞: LED, p-side down, GaN
相關次數: 點閱:43下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用有機金屬氣相磊晶(metal-organic vapor phase epitaxy, MOVPE)系統再成長倒置(p-side down)電極之氮化鎵系列發光二極體作相關研究。在元件特性方面,p-side down發光二極體之導通電壓偏大 ( > 4V) ,是由於高電阻的p型氮化鎵及p型氮化鋁鎵導致元件串聯電阻(series resistance) 過大 ( > 40 Ω)。由於電流擁擠(current crowding)效應的緣故使得電流注入效率不易,造成外部量子效率過低。此外,運用於p-side down發光二極體之上的透明導電層 (transparent conducting layer, TCL) 僅佔元件總面積的22%,與傳統 n-side down發光二極體其透明導電層將近78% 的覆蓋率相比差異極大,影響橫向電流散佈,造成發光效率不佳。另ㄧ方面,在發光二極體表面觀察到六角形缺陷造成漏電流路徑,導致元件在逆向偏壓20V時其漏電流為mA數量級,因電流注入效率不佳而影響到內部量子使得元件發光效率不高。因此,如何有效減少漏電流以及改善在p型氮化鎵層電流散佈不均問題,將是未來p-side down LEDs發展重點。

    In this study, the p-side down GaN-based light emitting diodes (LEDs) were grown by metal-organic vapor phase epitaxy (MOVPE). These p-side down LEDs exhibited high operating voltage ( > 4V) and low efficiency. The high operating voltage could be attributed to the fact that high resistivity of p-GaN and p-AlGaN leads to high series resistance (> 40 Ω). In addition, the low external quantum efficiency (EQE) could be due to the severe current crowding effect and hence a poor injection efficiency of current. The covering percentage of transparent conducting layer (TCL) on p-side down and n-side down LEDs are 22% and 78% of the total device area, respectively. This covering rate of TCL influences the lateral current spreading. On the other hand, the leakage current under 20 V reverse bias could be as high as tens mA where the leakge path might be the hexagonal pyramid pits observed on the LEDs’ surfaces. The high leakage current would lead to a poor injection efficiency of current, thereby reducing internal QE. In addition to the fabrication and characterization of the p-side down LEDs, how to reduce leakage current and improve the current spreading in p-layer were also discussed in this thesis.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 序論 1 1.1 前言 1 1.2 研究目的與動機 3 參考文獻 6 第二章 理論基礎、製程設備及量測系統 8 2.1 理論基礎 8 2.1.1 發光二極體(Light Emitting Diodes,LEDs)原理 8 2.1.2 傳輸線模型理論(Transmission Line Model,TLM) 9 2.2 製程設備系統 10 2.2.1 電子束蒸鍍原理 10 2.2.2 電漿輔助化學氣相沉積(Plasma Enhanced Chemical Vapor Deposition,PECVD)系統 11 2.2.3 有機金屬氣相磊晶(Metal Organic Vapor Phase Epitaxy, MOVPE)系統 12 2.3 實驗量測系統 13 2.3.1 X-ray繞射原理 13 2.3.2 微光致螢光光譜(µ-PL)原理 15 2.3.3 發光二極體二維光強度影像分佈量測系統 16 2.3.4 發光二極體光輸出功率(Output Power)量測系統 16 2.3.5 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM) 17 參考文獻 26 第三章 鎳/金金屬接觸於p型氮化鎵之TLM製程與特性分析比較 27 3.1 鎳/金金屬接觸於p型氮化鎵之TLM製程方法 27 3.2 鎳/金金屬接觸在p型氮化鎵上之歐姆接觸特性研究 30 參考文獻 36 第四章 倒置性 (p-side down) 電極氮化鎵發光二極體之製程方法與結果討論 37 4.1 倒置性 (p-side down) 電極氮化鎵發光二極體之製程方法 38 4.2 倒置性 (p-side down) 電極氮化鎵發光二極體之電性分析 39 4.2 倒置性 (p-side down) 電極氮化鎵發光二極體之光性分析 42 參考文獻 56 第五章 結論與未來展望 57 5.1 結論 57 5.2 未來展望 58 表目錄 表3-1 試片A2與A3之特徵接觸電阻值 33 表4-1 試片B1、B2、B3與B4之順向、逆向偏壓與串聯電阻 49 表4-2 試片B2、B3與B4在不同注入電流之光學影像圖 49 表4-3 試片B1、B2、B3與B4之In含量、週期厚度與發光波長 54 圖目錄 圖1-1 傳統藍光發光二極體示意圖 5 圖1-2 傳統藍光發光二極體元件完成示意圖 5 圖2-1 III-V族及II-VI族元素之能隙(Bandgap)與晶格常數(Lattice Constant)之關係圖[5] 19 圖2-2 P-N接面在順向偏壓下載子流動之示意圖 19 圖2-3 電阻RT與間距d之關係圖 20 圖2-4 電漿輔助化學氣相沉積系統反應腔體圖[6] 21 圖2-5 布拉格繞射原理示意圖 22 圖2-6 X-ray繞射量測示意圖 22 圖2-7 微光致螢光光譜量測系統之示意圖[3] 23 圖2-8 二維光強度影像分佈量測系統配置圖 24 圖2-9 光強度量測系統與光輸出功率量測系統示意圖 24 圖2-10 掃描式電子顯微鏡基本結構圖[3] 25 圖3-1 p型氮化鎵磊晶結構 33 圖3-2 試片A1 (ICP etched p-GaN/Ni/Au) 之 TLM 電流-電壓特性曲線 34 圖3-3 試片A2 (p-GaN/Ni/Au) 之 TLM電流-電壓特性曲線 34 圖3-4 試片A3 (MOVPE annealed p-GaN/Ni/Au) 之 TLM電流-電壓特性曲線 35 圖3-5 試片A1、A2與A3,在TLM間距為10μm時,電流-電壓特性曲線 35 圖4-1 傳統n-side down氮化鎵發光二極體磊晶結構(試片B1) 44 圖4-2 p-side down氮化鎵發光二極體磊晶結構(試片B2) 44 圖4-3 p-side down氮化鎵發光二極體磊晶結構(試片B3) 45 圖4-4 p-side down氮化鎵發光二極體磊晶結構(試片B4) 45 圖4-5 p-side down氮化鎵發光二極體之製程步驟示意圖。 46 圖4-6 元件B1、B2、B3與B4之氮化鎵發光二極體(a)線性 (b)對數 順向偏壓電流-電壓特性曲線圖 47 圖4-7 元件B1、B2、B3與B4之氮化鎵發光二極體逆向偏壓電流-電壓特性曲線圖 48 圖4-8 發光二極體等效電路模型 48 圖4-9 二氧化矽殘留於p型氮化鎵上導致磊晶缺陷示意圖 49 圖4-10 元件B2 (a)中心 (b)邊緣之SEM圖(×20,000) 50 圖4-11 元件B3 (a)中心 (b)邊緣之SEM圖(×20,000) 50 圖4-12 元件B4 (a)中心 (b)邊緣之SEM圖(×20,000) 50 圖4-13 二氧化矽殘留於p型氮化鎵之照片(a)×500 (b)×1000 (c) ×1000 51 圖4-14 (a) p-side down (b)傳統n-side down 氮化鎵發光二極體元件完成示意圖 51 圖4-15 元件B1氮化鎵發光二極體之XRD繞射光譜 52 圖4-16 元件B2氮化鎵發光二極體之XRD繞射光譜 52 圖4-17 元件B3氮化鎵發光二極體之XRD繞射光譜 53 圖4-18 元件B4氮化鎵發光二極體之XRD繞射光譜 53 圖4-19 元件B1、B2、B3與B4在逆向偏壓10V之EMMI影像圖 54 圖4-20 元件B2之SIMS深度與成分關係 55

    第一章
    參考文獻
    [1]. 史光國, “半導體發光及雷射二極體材料技術”, 全華科技圖書股份有限公司, 2004.
    [2]. Y.K. Su, S.J. Chang, C.H. Ko, J.F. Chen, T.M. Kuan, W.H. Lan, W.J. Lin, Y.T. Cherng, and J. Webb, “InGaN/GaN Light Emitting Diodes With a p-Down Structure”, IEEE Transactions On Electron Devices, vol. 49, no. 8, pp. 1361-1366, 2002.
    [3]. C.H. Ko, Y.K. Su, S.J. Chang, T.M. Kuan, C.I. Chiang, W.H. Lan, W.J. Lin, and J. Webb,“P-Down InGaN/GaN Multiple Quantum Wells Light-Emitting Diode Structure Grown by Metal-Organic Vapor-Phase Epitaxy”, Jpn. J. Appl. Phys, vol. 41, no. 4, pp. 2489-2492, 2002.
    [4]. C. Bayram, F.H. Teherani, D.J. Rogers, and M. Razeghi, “A hybrid green Light-Emitting Diode comprised of n-ZnO/ (InGaN/GaN) multi-quantum-wells p-GaN”, Applied Physics Letters, vol. 93, pp. 081111, 2008.
    [5]. M.L. Reed, E.D. Readinger, H. Shen, M. Wraback, A. Syrkin, A. Usikov, O.V. Kovalenkov, V.A. Dmitriev, “n-InGaN/p-GaN single heterostructure light emitting diode with p-side down”, Applied Physics Letters, vol. 93, pp. 133505, 2008.
    [6]. S.J. Chang, C.S. Chang, Y.K. Su, , R.W. Chuang, W.C. Lai, C.H. Kuo, Y.P. Hsu, Y.C. Lin, S.C. Shei, H.M. Lo, J.C. Ke, and J.K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact”, IEEE Photonics Technology Letters, vol. 16, no. 4, pp. 1002-1004, 2004.
    [7]. T. Margalith, O. Buchinsky, D.A. Cohen, A.C. Abare, M. Hansen, S.P. DenBaars, and L.A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices”, Applied Physics Letters, vol. 74, no. 26, pp. 3930-3932, 1999.
    [8]. X.A. Cao, S.J. Peartona, A.P. Zhang, G.T. Dang, F. Ren, R.J. Shul, L. Zhang, R. Hickman, J.M. Van Hove, “Electrical effects of plasma damage in p-GaN”, Applied Physics Letters, vol. 75, no. 17, pp. 2569-2571, 1999.
    [9]. C.H. Kuo, C.L. Yeh, P.H. Chen, W.C. Lai, C.J. Tun, J.K. Sheu, and G.C. Chia, “Low Operation Voltage of Nitride-Based LEDs with Al-Doped ZnO Transparent Contact Layer”, Electrochemical and Solid-State Letters, vol. 11, no. 9, pp. h269-h271, 2008.
    第二章
    參考文獻
    [1]. 史光國, “半導體發光二極體及固態照明”, 全華科技圖書股份有限公司, 2006.
    [2]. 彭立琪, “氧化鋅鋁參雜釔之透明導電薄膜材料特性與其應用在氮化鎵藍色發光二極體之研究”, 國立成功大學光電與工程研究所, 2007.
    [3]. 黃郁心, “成長於不同超晶格層上的氮化鎵/氮化鎵銦多重量子井之光學特性研究”, 國立成功大學光電與工程研究所, 2007.
    [4]. 張國華, “透明導電氧化鋅材料特性分析及其應用在氮化鎵蕭特基二極體之研究”, 國立成功大學光電與工程研究所, 2006.
    [5]. 洪逸修, “利用銀/鋁反射式電極增加氮化鎵系列藍光發光二極體光輸出功率之研究”, 國立成功大學光電與工程研究所, 2008.
    [6]. 廖宜銘, “紫外穿透低應力氮化矽鼓膜之研究與應用”, 國立中央大學物理研究所, 2004.
    第三章
    參考文獻
    [1]. X.A. Cao, S.J. Peartona, A.P. Zhang, G.T. Dang, F. Ren, R.J. Shul, L. Zhang, R. Hickman, J.M. Van Hove, “Electrical effects of plasma damage in p-GaN”, Applied Physics Letters, vol. 75, no. 17, pp. 2569-2571, 1999.
    [2]. J.C. Zolper, D.J. Rieger, A.G. Baca, S.J. Pearton, J.W. Lee, R.A. Stall, “Sputtered AlN encapsulant for high-temperature annealing of GaN”, Applied Physics Letters, vol. 69, no. 4, pp. 538-540, 1996.
    [3]. S.J. Chang, C.H. Lan, J.D. Hwang, Y.C. Cheng, W.J. Lin, J.C. Lin, H.Z. Chend, “Sputtered Indium-Tin-Oxide on p-GaN”, Journal of The Electrochemical Society, vol. 155, no. 2, pp. h140- h143, 2008.
    [4]. J.K. Ho, C.S. Jong, C.C. Chiu, C.N. Huang, and K.K. Shih, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films”, Journal Of Applied Physics, vol. 86, no. 8, pp. 4491-4496, 1999.
    [5]. Y. Koide, T. Maeda, T. Kawakami, S. Fujita, T. Uemura, N. Shibata, and M. Murakami, “Effects of Annealing in an Oxygen Ambient on Electrical Properties of Ohmic Contacts to p-Type GaN”, Journal Electron Mater, vol. 28, no. 3, pp. 341-346, 1999.
    第四章
    參考文獻
    [1]. S.W. Lee, D.C. Oh, H. Goto, J.S. Ha, H.J. Lee, T. Hanada, M.W. Cho, T. Yaoc, S.K. Hong, H.Y. Lee, S.R. Cho, J.W. Choi, J.H. Choi, J.H. Jang, J. E. Shin, and J.S. Lee “Origin of forward leakage current in GaN-based light-emitting devices”, Applied Physics Letters, vol. 89, pp. 132117, 2006.
    [2]. Z.Z. Chen, P. Liu, S.L. Qi, K. Xu, Z.X. Qin, Y.Z. Tong, T.J. Yu, X.D. Hu, G.Y. Zhang, “The origins of double emission peaks in electroluminescence spectrum from InGaN/GaN MQW LED”, Journal of Crystal Growth, vol. 298, pp. 731-735, 2007.

    下載圖示 校內:2012-08-01公開
    校外:2012-08-01公開
    QR CODE