| 研究生: |
徐珮華 Hsu, Pei-hua |
|---|---|
| 論文名稱: |
表面磷酸化幾丁聚醣之表面分析及血液相容性之探討 Surface Analysis and Blood Compatibility Evaluation of Surface Phosphorylated Chitosan |
| 指導教授: |
林睿哲
Lin, Jui-che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 磷酸化幾丁聚醣 、血液相容性 、保護基 |
| 外文關鍵詞: | protection, phosphorylated chitosan, blood compatibility |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
幾丁聚醣(Chitosan)在自然界中的含量僅次於纖維素,結構上近似於氨基葡聚醣(glycoaminoglycan,GAGs),氨基葡聚醣是生物體中細胞外基質的主要成分之一。與氨基葡聚醣相較下,幾丁聚醣成本較低廉,因此逐漸被應用在組織工程的領域中。由於幾丁聚醣分子上帶正電的氨基(amino group)被認為是幾丁聚醣在細胞培養上獨特生化特性的主要因素,因此本研究在幾丁聚醣第二個碳上的氨基進行保護與去保護策略,並進一步嘗試將幾丁聚醣第六個碳上的羥基,導入磷酸根官能基,以模仿細胞膜磷脂質的雙電性特性。
由實驗XPS以及ATR-FTIR的結果,顯示磷酸根官能基已經成功接枝於幾丁聚醣上,且表面氨基之保護與去保護策略也有成效,接觸角分析也得知磷酸化後表面會變得較為親水,SEM觀察其表面形態亦非常的平整。
磷酸化後的幾丁聚醣和血液接觸後,意外的發現其對於血小板吸附有促進的效果,且也能縮短血漿再鈣化的時間,將來於凝血方面的應用指日可待。
Chitosan is the second most abundant nature polysaccharide having a similar structure as glycosaminoglycans (GAGs) which are the main components of extra cellular matrix (ECM). Due to its relatively lower cost as compared to GAGs, many researches had tried to look for the application of chitosan in tissue engineering. Because the amino group at C2 of chitosan is thought as the major positive functional group with special biological characteristics in cell culture, it should be protected to maintain its original properties.
In this study, we follow the protection-deprotection strategy to keep the amount of the amino groups and then grafted the phosphorous groups onto the chitosan film. After this procedure, hopefully we could imitate the zwetterionic characteristics of phospholipids of the biomembrane.
From the results of ESCA and ATR-FTIR, we can tell the phosphorous group had been successfully grafted onto the chitosan film and the protection-deprotection strategy also worked. Static contact angle showed that the phosphorylated chitosan became more hydrophilic and the surface morphology was still very smooth and homogeneous.
What’s more, in the blood compatibility aspect, phosphorylated chitosan films revealed more platelets adhered onto it and less plasma recalcification time. In the future, the phosphorylated chitosan film may be used as a biomaterial to improve blood coagulation.
1. 蔣挺大 甲殼素,中國環境科學出版社:北京,1996。
2. Rinaudo M., “Chitin and chitosan: Proterities and applications,” Prog. Polym. Sci., 31, 603–632, 2006。
3. Nishimura et al., “Syntheses of Novel Chitosan Derivatives Soluble in Organic Solvents by Regioselective Chemical Modifications,” Chem Lett, 19, 243-246, 1990。
4. 國立成功大學化學工程研究所碩士論文,王嘉薇撰。
5. 陳嘉芬 細胞生物學,藝軒圖書出版社 : 台北市,2002。
6. Jun-jie Li et al., “Modulation of nano-hydroxyapatite size via formation on chitosan–gelatin network film in situ,” Biomaterials, 28, 781–790, 2007。
7. Meng-yen Tsai, Jui-che Lin, “Surface characterization and platelet adhesion studies of self-assembled monolayer with phosphonate ester and phosphonic acid functionalities,” J Biomed Mater Res, 55, 554–565, 2001。
8. Quan-Li Li et al., ”Chitosan-Phosphorylated Chitosan Polyelectrolyte Complex Hydrogel as an Osteoblast Carrier,” J Biomed Mater Res Part B: Appl Biomater, 82B, 481–486, 2007。
9. Kazuhiko Ishihara, Tomoko Ueda, and Nobuo Naka bayashi, “Preparation of Phospholipid Polymers and Their Properties as Polymer Hydrogel Membranes,” Polymer Journal, 22, 355-360, 1990。
10. Kaladhar K., Sharma C. P., “Supported Cell Mimetic Monolayers and Their Interaction with Blood,” Langmuir, 20, 11115-11122, 2004。
11. Xu H. H. K., Burguera E. F., and Carey L.E., “Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures,” Biomaterials, 28, 3786–3796, 2007。
12. Xiong Lu, Yang Leng, and Qi-yi Zhang, “Electrochemical of deposition octacalcium phosphate mirco-fiber/ chitosan composite coatings on titanium substrates,” Surface & Coatings Technology, 202, 3142-3147, 2008。
13. Weir M. D., Xu H. H. K., and Simon C. G., “Strong calcium phosphate cement-chitosan-mesh construct containing cell-encapsulating hydrogel beads for bone tissue engineering,” J Biomed Mater Res, 77A, 487–496, 2006。
14. Lebouc F., Dez I., and Madec P. J., “NMR study of the phosphonomethylation reaction on chitosan,” Polymer, 46, 319-325, 2005。
15. Susan B. et al., “The introduction of Alkyl, Ester, Carboxylate, Amino, Hydroxyl and Phosphate Functional Groups to the Surface of Polyethylene,” Journal of Applied Polymer Science, 44, 965-980, 1992。
16. Yokogawa Y. et al., “Growth of calcium phosphate on phosphorylated chitin fibres,” J Mater Sci Mater Med, 8, 407-412, 1997。
17. Varma H. K. et al., “Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method,” Biomaterials, 20, 879-884, 1999。
18. Tanahashi M., Matsuda T., “Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid,” J Biomed Mater Res, 34, 305-315, 1997。
19. Yu-ji Yin et al., ”A Study on Biomineralization Behavior of N-Methylene Phosphochitosan Scaffolds,” Macromol Biosci, 4, 971-977, 2004.
20. Yokogawa Y. et al., “Bioactive Properties of Chitin/Chitosan Calcium Phosphate Composite Materials,” J Sol-Gel Sci Technol, 21, 105-113, 2001。
21. Chatelet C., Damour O., and Domard A., “Influence of the degree of acetylation on some biological properties of chitosan films,” Biomaterials, 22, 261-268, 2001。
22. IIyina A.V. et al., “One-step isolation of a chitinase by affinity chromatography of the chitinolytic enzyme complex produced by Streptomyces kurssanovii,” Biotechnol Appl Biochem, 19, 199-207, 1994。
23. 何敏夫,血液學,合記出版社,1993。
24. Yeh HY, Lin JC, “Surface characterization and in vitro platelet compatibility study of surface sulfonated chitosan membrane with amino group protection–deprotection strategy,” J Biomater Sci Polym Ed., 19, 291-310, 2008。
25. Nishimura S. I., Kohgo O., and Kurita K., “Chemospecific manipulations of a rigid polysaccharide: syntheses of novel chitosan derivatives with excellent solubility in common organic solvents by regioselective chemical modifications,” Mcromolecules, 24, 4745-4748, 1991。
26. Nishimura S. I. et al., “Syntheses of Novel Chitosan Derivatives Soluble in Organic Solvents by Regioselective Chemical Modifications,” Chemistry Letters, 243-246, 1990。
27. Kurita K. et al., “N-Phthaloylated Chitosan as an Essential Precursor for Controlled Chemical Modifications of Chitosan: Synthesis and Evaluation,” Polymer Journal, 39, 945–952, 2007。
28. Meifang Huang M. F. et al., “Preparation of chitosan derivative with polyethylene glycol side chains for porous structure without specific processing technique, “ International Journal of Biological Macromolecules, 38, 191–196, 2006。
29. Lin W. J., Chen M. H., “Synthesis of multifunctional chitosan with galactose as a targeting ligand for glycoprotein receptor,” Carbohydrate Polymers, 67, 474–480, 2007。
30. Varma H.K., et al., “Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method,” Biomaterials, 20, 879-884, 1999。
31. Ying et al., “Synthesis, Characterization and Ionic Conductive Properties of Phosphorylated Chitosan Membranes,” Macromol. Chem. Phys., 204, 850–858, 2003。
32. Yokogawa Y.et al., “Bioactive Properties of Chitin/Chitosan—Calcium Phosphate Composite Materials,” Journal of Sol-Gel Science and Technology, 21, 105–113, 2001。
33. 國立成功大學化學工程研究所碩士論文,林佳妏撰。
34. Shigemasa Y. et al., “Evaluation of different
absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin,” International Journal of Biological Macromolecules, 18, 237-242, 1996。
35. Amaral I.F., Granja P. L., and Barboa M. A., “Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study,” J. Biomater. Sci.Polymer Edn, 16, 1575-1593, 2005。
36. Mansoor M., “Synthesis of anionic poly(ethylene glycol) derivative for chitosan surface modification in blood-contacting applications,” Carbohydrate Polymers, 32, 193-199, 1997。
37. Bourbigot S. et al., “XPS study of an intumescent coating application to the ammonium polyphosphate/pentaerythritol fire-retardant system,” Applied Surface Science 81, 299-30,1994。
38. Amaral I. F., et al., “Functionalization of chitosan membranes through phosphorylation: Atomic force microscopy, wettability, and cytotoxicity studies,” J Appl Polym Sci, 102, 276–284, 2006。
39. Granja, P. L., et al., “Cellulose phosphates as biomaterials. II. Surface chemical modification of regenerated cellulose hydrogels,” J Appl Polym Sci, 82, 3354, 2001。
40. Rao S. B., Sharma C. P., “Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential,” Journal of Biomedical Materials Research. 34, 21–28, 1997。
41. Klokkevold P. R. et al., “The effect of chitosan (poly-N-acetyl glucosamine) on lingual hemostasis in heparinized rabbits,” J Oral Maxillaffac Surg, 57, 49-52, 1999。
42. Janvikul W. et al., “In Vitro Comparative Hemostatic Studies of Chitin, Chitosan, and Their Derivatives,” J Appl Polym Sci, 102, 445-451, 2006。
43. Mansoor M. “Synthesis of anionic poly(ethylene glycol) derivative for chitosan surface modification in blood-contacting applications," Carbohydrate Polymers, 32, 193-199, 1997。