研究生: |
劉高亨 Liu, Kao-Heng |
---|---|
論文名稱: |
以化學共沉法製備鋰鋁鈷鎳(鈷錳、鎳錳)氧化物及其性質之研究 Synthesis and properties of LiAlxMyM’1-x-yO2 (M,M’=Co, Ni; Co,Mn; Ni,Mn) by chemical coprecipitation |
指導教授: |
高振豐
Kao, Chen-Feng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 145 |
中文關鍵詞: | 介電常數 、化學共沉法 |
外文關鍵詞: | SQUID, XRD, chemical coprecipitation, dielectric constant |
相關次數: | 點閱:69 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以化學共沉法來製備鋰鋁鈷鎳(鈷錳、鎳錳)氧化物,化學共沉法是以原子等級混合,具有高均勻性、高反應性及低溫合成等優點。以化學共沉法合成的前導物,於800℃、900℃及1000℃下煆燒6小時,經由FTIR及XRD交叉分析判定1000℃為最佳的煆燒溫度,將煆燒後的粉末以PVA為黏結劑作成燒結體,燒結溫度為1200℃、1300℃及1400℃,時間為6小時。由直流電阻、交流電阻分析得知燒結體的電阻隨著燒結溫度升高而增加,電阻率介於1e6〜1e10Ω-cm之間,為半導體範圍內。介電常數方面,LiAlxCoyNi1-x-yO2與LiAlxNiyMn1-x-yO2的介電常數均在70以內,而LiAlxCoyMn1-x-yO2的介電常數一般較高,最高可達到700,且介電常數隨著燒結溫度升高而降低。經由超導量子干涉儀作燒結體的磁性分析,得知LiAlxCoyNi1-x-yO2屬順磁性,而LiAlxCoyMn1-x-yO2與LiAlxNiyMn1-x-yO2在低溫為反鐵磁性,超過Neel溫度後為順磁性。由充放電實驗結果可知參雜鋁可提高陰極材料的放電電壓但減少電容量。
LiAlxMyM’1-x-yO2 (M,M’=Co,Ni; Co,Mn; Ni,Mn) were synthesized via chemical coprecipitation. Chemical coprecipitation method has high homogeneity, high reactivity, high quality and low-temperature synthesis.
TGA, FTIR, XRD and SEM were used to study the properties of precursors. The optimum calcination temperature was 1000℃ for 6h. The average particle size was at about 0.3~0.5μm and the distribution was relatively narrow.
Calcined powders were pressed into disks and then sintered at various temperatures for 6h. High resistance meter and LCR meter were used to measure the DC and AC resistivity, respectively. The resistivity increases with increasing sintering temperature and that is 1e6~1e10Ω-cm, belonged to a semiconductor material.
The dielectric constants of LiAlxCoyNi1-x-yO2 and LiAlxNiyMn1-x-yO2 were all below 70 and those of LiAlxCoyMn1-x-yO2 were below 700. As increasing sintering temperature, the dielectric constants of the sintered bodies decreases. Magnetic susceptibilities was performed by SQUID in the temperature range of 5-300K. The reciprocal susceptibility vs. Temp. curves of LiAlxCoyNi1-x-yO2 show a paramagnetic behavior. However, LiAlxCoyMn1-x-yO2 and LiAlxNiyMn1-x-yO2 show anti-ferromagnetic behavior < Tn and paramagnetic behavior > Tn(Tn = Neel temperature).
It is not only enhances discharge voltage but also reduces capacity on electrochemical performance in increasing the aluminum content.
1. Y. Nishi, “Lithium ion secondary batteries; past 10 years and the future”, J. Power Sources, 100, 101-106, 2001.
2. M. L. Soria, J. Chacon, J. C. Hernandez, “Metal hydride electrodes and Ni/MH batteries for automotive high power applications”, J. Power Sources, 102, 97-104, 2001.
3. F. G. Will, “Impact of lithium abundance and cost on electric vehicle battery applications”, J. Power Sources, 63, 23-26, 1996.
4. S. Basu, “Early studies on anodic properties of lithium intercalated graphite”, J. Power Sources, 81-82, 200-206, 1999.
5. Z.-I. Takehara, “Future prospects of the lithium metal anode”, J. Power Sources, 68, 82-86, 1997.
6. R. Fong, U. Von Sacken, J. R. Dahn, “Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells”, J. Electrochem. Soc., 137, 2009-2013, 1990.
7. Y. Matsumura, S. Wang, J. Mondori, “Interactions between disordered carbon and lithium in lithium ion rechargeable batteries”, Carbon, Vol.33, 1457-1462, 1995.
8. P. Liu, H. Wu, “Construction and destruction of passivating layer on LixC6 in organic electrolytes: an impedance study”, J. Power Sources, 56, 81-85, 1995.
9. M. Wissler, “Graphite and carbon powders for electrochemical applications”, J. Power Sources, 156, 142-150, 2006.
10. I. Belharouak, W. Lu, D. Vissers, K. Amine, “Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2”, Electrochem. Commun., 8, 329-335, 2006.
11. L. Liao, X. Wang, X. Luo, X. Wang, S. Gamboa, P.J. Sebastain, “Synthesis and electrochemical properties of layered Li[Ni0.333Co0.333 Mn0.293Al0.04]O2-zFz cathode materials prepared by the sol-gel method”, J. Power Sources, 160, 657-661, 2006.
12. D. Song, H. Ikuta, T. Uchida, M. Wakihara, “The Spinel phase LiAlyMn2-yO4 (y= 0, 1/12, 1/9, 1/6, 1/3) and Li(Al,M)1/6Mn11/6O4 (M = Cr, Co) as the cathode for rechargeable lithium batteries”, Solid State Ionics, 117, 151-156, 1999.
13. M. Dolle, J. Hollingsworth, T.J. Richardson, M.M. Doeff, “Investigation of layered intergrowth LixMyMn1-yO2+z (M=Ni, Co, Al) compounds as positive electrodes for Li-ion batteries”, Solid State Ionics, 175, 225-228, 2004.
14. H.S. Shin, S.H. Park, Y.C. Bae, Y.K. Sun, “Synthesis of Li[Ni0.475 Co0.05Mn0.475]O2 cathode materials via a carbonate process”, Solid State Ionics, 176, 2577-2581, 2005.
15. J. Shim, K.A. Striebel, “Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4”, J. Power Sources, 119-121, 955-958, 2003.
16. J. Kim, B.H. Kim, Y.H. Baik, P.K. Chang, H.S. Park, K. Amine, “Effect of (Al, Mg) substitution in LiNiO2 electrode for lithium batteries”, J. Power Sources, 1, 641-645, 2006.
17. X. Wang, O. Tanaike, M. Kodama, H. Hatori, “High rate capability of the Mg-doped Li-Mn-O spinel prepared via coprecipitated precursor”, J. Power Sources, 168, 282-287, 2007.
18. M. Wakihara, “Recent developments in lithium ion batteries”, Mater. Sci. Eng. R33, 109-134, 2001
19. H.S. Liu, J. Li, Z.R. Zhang, Z.L. Gong, “The effects of sintering temperature and time on the structure and electrochemical performance of LiNi0.8Co0.2O2 cathode materials derived from sol-gel method”, J. Solid State Electrochem., 7, 456-462, 2003.
20. R.J. Gummow, M.M. Thackeray, “Lithium-Cobalt-Nickel-Oxide Cathode Materials Prepared at 400 for Rechargeable Lithium Batteries”, Solid State Ionics, 53, 681-687, 1992.
21. 林振華,林振富, “充電式鋰離子電池材料與應用”,全華科技圖書股份有限公司(2001)
22. K. Mizushima, P. C. Jones, P. J. Wideman, J. B. Goodenough, “LixCoO2(0<x<-1): A new cathode material for batteries of high energy density” , Mater. Res. Bull. , 15, 783-789, 1980.
23. P. Y. Liao, J. G. Duh, S. R. Sheen, “Effect of Mn Content on the Microstructure and Electrochemical Performance of LiNi0.75-xCo0.25Mnx O2 Cathode Materials”, J. Electrochem. Soc., 152, 1695-1700, 2005.
24. T. Ohzuku, A. Ueda, M. Kouguchi, “Synthesis and Characterization of LiAl1/4Ni3/4O2 (R m) for Lithium-Ion (Shuttlecock) Batteries”, J. Electrochem. Soc., 142, 4033-4039, 1995.
25. A. Hirano, R. Kanno, Y. Kawamoto, Y. Nitta, “Neutron Diffraction Study of LiNi0.8Mn0.2O2”, J. Solid State Chem., 134, 1-4, 1997.
26. A. Rougier, I. Saadoune, P. Gravereau, P. Willmann, C. Delmasa, “Effect of cobalt substitution on cationic distribution in LiNi1-yCoyO2 electrode materials”, Solid State Ionics, 90, 83-90, 1996.
27. T. Ohzuku, M. Kitagawa, T. Hirai, “Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell”, J. Electrochem. Soc., 137, 769-775,1990.
28. T. Gross, Th. Buhrmester, K. G. Bramnik, N. N. Bramnik, K. Nikolowski, C. Baehtz, H. Ehrenberg, H. Fuess, “Structure-intercalation relationships in LiNiyCo1-yO2”, Solid State Ionics, 176, 1193-1199, 2005.
29. H. Abe, K. Zaghib, K. Tatsumi, S. Higuchi, “Performance of lithium -ion rechargeable batteries: graphite whisker/ electrolyte/ LiCoO2 rocking -chair system”, J. Power Sources, 54, 236-239, 1995.
30. S.T. Myung, N. Kumagai, S. Komaba, H. T. Chung, “Effects of Al doing on the microstructure of LiCoO2 cathode materials”,Solid State Ionics, 139, 47-56, 2001.
31. H. Huang, G.V. Subba Rao, B.V.R. Chowdari, “LiAlxCo1-xO2 as 4V cathodes for lithium ion batteries”, J. Power Sources, 81-82, 690-695, 1999.
32. C. Julien, M.A. Camacho-Lopez, M. Lemal, S. Ziolkiewicz, “LiCo1-yMyO2 positive electrodes for rechargeable lithium batteries I.Aluminum doped materials”, Mater. Sci. Eng., B95, 6-13, 2002.
33. P. Kalyani, N. Kalaiselvi, N.G. Renganathan, M. Raghavan, “Studies on LiNi0.7Al0.3-xCoxO2 solid solutions as alternative cathode materials for lithium batteries”, Mater. Res. Bull., 39, 41-54, 2004.
34. Y. K. Sun, Y. S. Jeon, H. J. Lee, “Overcoming Jahn-Teller Distortion for Mn Phase”, Electrochem. Solid-State Lett., 3, 7-9, 2000.
35. A. Tang, K. Huang, “Structure and electrochemical properties of Li1+yNi0.5AlxMn0.5-xO2 synthesized by a new sol-gel method”, Mater. Chem. Phy., 93, 6-9, 2005.
36. Y. J. Kang, J. H. Kim, S. W. Lee, Y. K. Sun “The effect of Al(OH)3 coating on the Li[Li0.2Ni0.2Mn0.6]O2 cathode material for lithium secondary battery” Electrochimica Acta, 50, 4784-4791, 2005.
37. C. Bo, J. B. Li, Y. S. Han, J. H. Dai, “Effect of precipitant on preparation of Ni-Co spinel oxide by coprecipitation method”, Mater. Lett., 58, 1415-1418, 2004.
38. D. W. Johnson, Jr., “Nonconventional Powder Preparation Techniques”, Ceram. Bull., 60, 221-224, 1981.
39. J.A. Dean, “Lange’s Handbook of Chemistry 15th ed.”, McGraw-Hill Company, Chap.8, 8.6-8.17, 1997.
40. S. Chikazumi, Stanley H. Charap, “Physics of Magnetism”, John Wiley & Sons, 37-109, 1985.
41. B. D. Cullity, “Introduction to Magnetic Materials”, Addison-Welsey, Chap.3, 85-203, 1972.
42. C. Julien, S. Ziolkiewicz, M. Lemal, M. Massot, “Synthesis, structure and electrochemistry of LiMn2-yAlyO4 prepared by a wet-chemistry method”, J. Mater. Chem., 11, 1837-1842, 2001.
43. Y. Zhang, H. Cao, J. Zhang, B. Xia, “Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization”, Solid State Ionics, 177, 3303-3307, 2006.
44. D. Pan, D. Yuan, H. Sun, X. Duan, C. Luan, S. Guo, Z. Li, L. Wang, “Preparation and characterization of Co2+ -doped LiAl5O8 nano-crystal powders by sol-gel technique”, Mater. Chem. Phys., 96, 317-320, 2006.
45. Robinson, J. W. “Handbook of Spectroscopy” Crc. Press, 96-99, 1974
46. T. J. Richardson, S. J. Wen, K. A. Striebel, P. N. Ross, Jr. and E. J. Cairns, “FTIR SPECTROSCOPY OF METAL OXIDE INSERTION MATERIALS: ANALYSIS OF LixMn2O4 SPINEL ELECTRODES”, Mater. Res. Bull., Vol. 32, 609-618, 1997.
47. Lange, F. F. “Sinterability of Agglomerated Powders” J. Am. Ceram. Soc., Vol.67, 83-89, 1984.
48. Sacks, M. D. ; Pask, H. A. “Sintering of Mullite-Containing Materials : II , Effect of Agglomeration” J. Am. Ceram. Soc., Vol.65, 70-77, 1982.
49. Y. Jang, B. Huang, H. Wang, G.R. Maskaly, G. Ceder, D.R. Sadoway, Y.M. Chiang, H. Liu, H. Tamura “Synthesis and characterization of LiAlyCo1-yO2 and LiAlyNi1-yO2” J. Power Sources, Vol.81-82, 589-593, 1999.
50. B.J. Hwang, R. Santhanam, D.G. Liu, Y.W. Tsai, “Effect of Al-substitution on the stability of LiMn2O4 spinel, synthesized by citric acid sol-gel method”, J. Power Sources, 102, 326-331, 2001
51. S. Choi, A. Manthiram “Chemical synthesis and properties of spinel Li1-xCo2O4-δ” J. Solid State Chem., Vol.164, 332-338, 2002.
52. S.-H. Kang, J. Kim, M.E. Stoll, D. Abraham, Y.K. Sun, K. Amine, “Layered Li(Ni0.5-xMn0.5-xM’2x)O2 (M’=Co, Al, Ti;x=0, 0.025) cathode materials for Li-ion rechargeable batteries”, J. Power Sources, 112, 41-48, 2002.
53. J.A. Dean, “Lange’s Handbook of Chemistry 15th ed.”, McGraw-Hill Company, Chap.4, 4.30-4.34, 1997.
54. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, “Introduction to Ceramics 2nd ed.”, John Wiley & Sons, Chap.19, 985-986, 1975.