簡易檢索 / 詳目顯示

研究生: 盧奕中
Lu, Yi-Chung
論文名稱: 運用機器學習之支援向量機進行船艦分類及辨識
Research on Ship Target Classifications and Recognitions by Use of Support Vector Machine of Machine Learning
指導教授: 涂季平
Too, Gee-Pinn
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 92
中文關鍵詞: 支援向量機船艦輻射噪聲機器學習
外文關鍵詞: Support Vector Machine, Ship Radiation Sound Field, Machine Learning
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對船艦聲聲場分類及辨識進行機器學習模型之應用,透過導入船艦噪聲模擬之三種不同船型種類之模擬數據至機器學習方法中的支援向量機內,使用基本支援向量機之多種類分類基本方法、貝葉斯定理以及糾錯輸出碼模型進行三種船型於不同訊雜比狀況下的數據分類分佈區域觀察以及數據點之分類種類預測,並期望能透過船艦噪聲聲場數據處理的更佳化找出更加準確的分類預測模型。
    而根據本研究之研究結果可見特徵頻率對應船速於糾錯輸出碼分類模型中之分類預測結果最佳,而透過訊雜比(SNR)之提升,特徵頻率針對各式參數進行數據分類及預測辨識效果上將有一定程度的提升。

    This research applies the machine learning models to the classification and identification in ship types with the acoustic data of noise. By importing the simulation data of three different ship types of noise with different signal noise ratio into the support vector machine model of the machine learning theories including multiple classes classification model, Naive Bayes classify model, and Error-correcting output codes model, we are able to classify and predict the ship types. we expect the results to be more precisely with the improvement on the ship acoustic data of noise processing in the future.
    The results show that Error-correcting output codes model presents better in the prediction of ship types than other two models with the data of characteristic frequency against speed. Also, by the increasing of signal noise ratio level, it presents better for characteristic frequency against different constant.

    Key words: Support Vector Machine, Ship Radiation Sound Field, Machine Learning

    摘要 II 誌謝 XII 目錄 XIII 圖目錄 XV 表目錄 XIX 緒論 p.1  1.1 前言 p.1  1.2 研究動機 p.1  1.3 研究目的 p.2  1.4 研究架構 p.2 第二章 文獻回顧 p.3  2.1 機器學習演算法之相關海洋應用 p.3  2.2 支援向量機(Support Vector Machine)相關之水下應用 p.9 第三章 研究方法 p.15  3.1 支援向量機 (Support Vector Machine) p.15  3.2 多分類型支援向量機(Multiple Class Boundaries)p.24  3.3 貝葉斯理論(Naive Bayes Method) p.30  3.4 糾錯輸出碼模型(Error-correcting Output Codes Model) p.31  3.5 船艦噪聲建模工具(Ship Radiated Noise Model)p.34   3.5.1 船艦輻射噪聲概述 p.34   3.5.2 船艦輻射噪聲頻譜結構 p.35   3.5.3 船艦噪聲建模概述 p.37   3.5.4 船艦噪聲建模設定及數據處理 p.43 第四章 結果與討論 p.50  4.1 分佈及分類狀況結果 p.50   4.1.1 訊雜比(SNR)=3.5 p.50   4.1.2 訊雜比(SNR)=4.0 p.58   4.1.3 訊雜比(SNR)=4.8 p.64   4.1.4 訊雜比(SNR)=5.5 p.70  4.2 船艦辨識預測分類結果 p.76   4.2.1 貝葉斯分類模型(Naive Bayes Model)預測 p.76   4.2.2 糾錯輸出碼模型(Error-correcting Output Codes Model, ECOC)預測 p.78   4.2.3 綜合比較 p.79 第五章 結論與未來展望 p.89 參考文獻 p.90

    [1] Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge university press.
    [2] Fischell, E. M., & Schmidt, H. (2017). Supervised machine learning for estimation of target aspect angle from bistatic acoustic scattering. IEEE Journal of Oceanic Engineering, 42(4), 759-769.
    [3] Ge, Q. B., & Wen, C. L. (2008, July). Relative ship positioning based on information fusion in the MITS. In 2008 International Conference on Machine Learning and Cybernetics (Vol. 7, pp. 4068-4073). IEEE.
    [4] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media.
    [5] Hu, Q., & Davis, C. (2005). Automatic plankton image recognition with co-occurrence matrices and support vector machine. Marine Ecology Progress Series, 295, 21-31.
    [6] Hu, T., & Fei, Y. (2010). QELAR: A machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Transactions on Mobile Computing, 9(6), 796-809.
    [7] Kiliç, M. M., & Akgül, Y. S. (2018, May). Ship location estimation from radar and optic images using metric learning. In 2018 26th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
    [8] Kim, J., Song, S., & Yu, S. C. (2017, February). Denoising auto-encoder based image enhancement for high resolution sonar image. In 2017 IEEE Underwater Technology (UT) (pp. 1-5). IEEE.
    [9] Kong, E. B., & Dietterich, T. G. (1995). Why Error-Correcting Output Coding Works.
    [10] Li, X., Song, Y., Guo, J., Feng, C., Li, G., Yan, T., & He, B. (2017, February). Sensor fault diagnosis of autonomous underwater vehicle based on extreme learning machine. In 2017 IEEE Underwater Technology (UT) (pp. 1-5). IEEE.
    [11] Liu, J., He, Y., Liu, Z., & Xiong, Y. (2014, March). Underwater target recognition based on line spectrum and support vector machine. In 2014 International Conference on Mechatronics, Control and Electronic Engineering (MCE-14). Atlantis Press.
    [12] Liu, Y. (2006). Using SVM and error-correcting codes for multiclass dialog act classification in meeting corpus. In Ninth International Conference on Spoken Language Processing.
    [13] Murphy, K. P. (2006). Naive bayes classifiers. University of British Columbia, 18, 60.
    [14] Ogunlana, S. O., Olabode, O., Oluwadare, S. A. A., & Iwasokun, G. B. (2015). Fish classification using support vector machine. African Journal of Computing & ICT, 8(2), 75-82.
    [15] Too, G. P. J., Lin, E. S., & Hsieh, Y. H. (2006, May). Source localization based on ray theory and artificial neural network. In OCEANS 2006-Asia Pacific (pp. 1-8). IEEE.
    [16] Xinhua, Z., Zhenbo, L., & Chunyu, K. (2003, December). Underwater acoustic targets classification using support vector machine. In International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003 (Vol. 2, pp. 932-935). IEEE.
    [17] Xu, F., Zou, Z. J., Yin, J. C., & Cao, J. (2012). Parametric identification and sensitivity Analysis for Autonomous underwater vehicles in diving plane. Journal of Hydrodynamics, 24(5), 744-751.
    [18] Xu, F., Zou, Z. J., Yin, J. C., & Cao, J. (2013). Identification modeling of underwater vehicles' nonlinear dynamics based on support vector machines. Ocean Engineering, 67, 68-76.
    [19] Yan, Z. (2010, July). Research on ECOC SVMs. In 2010 8th World Congress on Intelligent Control and Automation (pp. 2838-2842). IEEE.
    [20] Zhang, W., Wu, Y., Wang, D., Wang, Y., Wang, Y., & Zhang, L. (2018, July). Underwater Target Feature Extraction and Classification Based on Gammatone Filter and Machine Learning. In 2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR) (pp. 42-47). IEEE.
    [21] 徐偉哲. (2019). 結合抗爆震及減振潛艦裝備之避震墊數值分析. 成功大學系統及船舶機電工程學系學位論文, 1-91.
    [22] 曾宇淩. (2016). 應用適應性時間反轉法於聲源定位與訊號還原之研究. 成功大學系統及船舶機電工程學系學位論文, 1-100.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE