簡易檢索 / 詳目顯示

研究生: 李炯毅
Li, Chiung-Yi
論文名稱: 太陽光驅動下 Bi12O17Cl2 於甲醇選擇性氧化成甲醛之研究
Solar-Light-Driven Selective Photocatalytic Oxidation of Methanol to Formaldehyde over Bi12O17Cl2
指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 114
中文關鍵詞: Bi12O17Cl2光催化甲醇選擇性氧化成甲醛染料降解活性自由基
外文關鍵詞: Bi12O17Cl2, photocatalysis, selective oxidation of methanol to formaldehyde, reactive radicals
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 甲醛為關鍵的基礎化工原料,廣泛應用於樹脂、塑膠與醫藥等產業,全球約 40% 的工業甲醇被用於其合成,並作為超過 50 種化學品製程的中間體。傳統甲醛製程多仰賴金屬催化劑在高溫高壓條件下進行甲醇氧化,過程中不僅能源消耗高,伴隨潛在的環境污染與碳排放問題。為實現低碳且環境友善的綠色生產,光催化技術提供一條具潛力的替代途徑,可於常溫條件下有效利用太陽能作為反應驅動力,實現低能耗且具高選擇性的氧化反應,進而推動甲醛之永續合成。本研究以常溫化學沉澱法合成 Bi12O17Cl2,系統性探討溶劑種類、離子置換、界面活性劑添加與氫氧化鈉濃度等參數,對晶體形貌、結構特性與光催化性能之影響。材料性質以 XRD、SEM、TEM 及 UV-visible 吸收光譜,分析樣品結晶相、形貌與光學吸收行為。為評估 Bi12O17Cl2 在太陽光驅動下的應用潛力,本研究以染料降解與光催化選擇性氧化甲醇成甲醛,並與商用 P25 進行對比。實驗結果顯示,Bi12O17Cl2 在太陽光照射下展現高度選擇性氧化甲醇成甲醛的能力,甲醛產量最高可達 780.3 μmol/g·hr。本研究結合ESR、UPS 與 Mott-Schottky 分析,釐清Bi12O17Cl2的能帶結構與光生載子特性,並透過反應氣氛與犧牲試劑的控制,深入探討Bi12O17Cl2之光催化反應與反應活性物種關聯性,解析 Bi12O17Cl2 之選擇性光催化反應行為並建構完整反應機制。

    Formaldehyde is a key basic chemical widely used in the production of resins, plastics, and pharmaceuticals. Approximately 40% of global industrial methanol is consumed for formaldehyde synthesis, serving as an intermediate in the production of over 50 chemical compounds. Conventional formaldehyde synthesis relies on metal catalysts under high-temperature and high-pressure conditions, leading to high energy consumption and environmental concerns such as pollution and carbon emissions. To enable low-carbon and environmentally friendly production, photocatalysis offers a promising alternative, utilizing solar energy to drive oxidation reactions under ambient conditions with low energy input and high selectivity.In this study, Bi12O17Cl2 was synthesized via a room-temperature chemical precipitation method, and the effects of NaOH concentration on its crystal phase, morphology, and photocatalytic performance were systematically investigated. The structural and optical properties of the materials were characterized using XRD, SEM, TEM, and UV-visible spectroscopy. To assess the solar-driven photocatalytic potential of Bi12O17Cl2 , selective oxidation of methanol to formaldehyde was performed and compared with commercial P25. Experimental results revealed that Bi12O17Cl2 exhibited excellent selectivity toward formaldehyde under solar irradiation, achieving a maximum yield of 780.3 μmol/g·hr.Furthermore, ESR, UPS, and Mott–Schottky analyses were conducted to elucidate the band structure and photogenerated charge carrier behavior of Bi12O17Cl2. By controlling the reaction atmosphere and introducing sacrificial agents, the correlation between active species and photocatalytic performance was explored in depth. The study clarifies the selective photocatalytic behavior of Bi12O17Cl2 and proposes a comprehensive reaction mechanism.

    摘要 II Abstract III 致謝 XXIV 目錄 XXVI 表目錄 XXVII 圖目錄 XXVIII 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 半導體光催化劑原理與應用 3 2.2 鉍氧氯化合物 5 2.2.1 氯化氧鉍 6 2.2.2 Bi12O17Cl2 7 2.3 Bi12O17Cl2形貌和尺寸控制 8 2.4 光催化氧化甲醇產甲醛 10 第三章 研究方法 13 3.1 實驗藥品 13 3.2 光催化劑合成 14 3.2.1 簡易常溫化學沉澱法製備 Bi12O17Cl2 14 3.2.2 透過界面活性劑與離子置換調控製備 Bi12O17Cl2 15 3.2.3 化學還原法合成 Bi/ Bi12O17Cl2 16 3.3 光催化實驗 17 3.3.1 染料降解實驗 17 3.3.2 光催化氧化甲醇產甲醛實驗 18 3.4 光催化材料性質分析 20 3.4.1 X 光繞射儀 (X-ray Diffraction, XRD) 20 3.4.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 21 3.4.3 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 21 3.4.4 紫外-可見光光譜儀 (UV-Visible Spectrophotometer) 22 3.4.5 X 光電子能譜儀 ( X-ray Photoelectron Spectrometer, XPS ) 23 3.4.6 電子自旋共振儀(Electron Spin Resonance, ESR) 23 3.4.7 恆電位電流儀 24 第四章 結果與討論 26 4.1 化學沉澱法不同製程參數對 Bi12O17Cl2 形貌之比較 26 4.1.1 溶劑種類 26 4.1.2 添加表面活性劑 28 4.1.3 離子置換 32 4.1.4 氫氧化鈉濃度調整 36 4.2 光催化染料降解及應用評估 42 4.2.1 光催化 RhB 染料降解 42 4.2.2 光催化染料降解機制探討 44 4.2.3 光催化應用之評估 51 4.3 光催化選擇性氧化甲醇成甲醛之應用 55 4.3.1 不同樣品於氧化甲醇反應中之選擇性與效能比較 55 4.3.2 反應條件對甲醛產率與穩定性影響 57 4.3.3 Bi/BN40 異質結構對光催化性能之影響 60 4.3.4 BN40 還原與氧化再生行為 69 4.4 綜合機制探討 70 第五章 結論 73 參考文獻 75

    [1] N. K. Arora and I. Mishra, United Nations Sustainable Development Goals 2030 and environmental sustainability: race against time, Environmental Sustainability, 339-42, 2019
    [2] M. Bexell and K. Jönsson, "Responsibility and the United Nations’ sustainable development goals," in Forum for development studies, 2017, vol. 44, no. 1: Taylor & Francis, pp. 13-29.
    [3] L. Carlsen and R. Bruggemann, The 17 United Nations’ sustainable development goals: A status by 2020, International Journal of Sustainable Development & World Ecology, 219-29, 2022
    [4] V. K. Gupta, I. Ali, T. A. Saleh, A. Nayak, and S. Agarwal, Chemical treatment technologies for waste-water recycling—an overview, RSC advances, 6380-88, 2012
    [5] A. Rahman, J. R. Jennings, A. L. Tan, and M. M. Khan, Molybdenum disulfide-based nanomaterials for visible-light-induced photocatalysis, ACS omega, 22089-110, 2022
    [6] L. Xiong and J. Tang, Strategies and challenges on selectivity of photocatalytic oxidation of organic substances, Advanced Energy Materials, 2003216, 2021
    [7] Z. Long, Q. Li, T. Wei, G. Zhang, and Z. Ren, Historical development and prospects of photocatalysts for pollutant removal in water, Journal of hazardous materials, 122599, 2020
    [8] Y. Zhou, Z. Xu, L. Tang, J. Qin, G. Lu, H. Dong, Z. Bian, and M. Zhu, Internal electric field facilitates facet-dependent photocatalytic Cl–utilization on BiOCl in high-salinity wastewater for ammonium removal, Environmental Science & Technology, 6049-57, 2024
    [9] X. Chen, G. Liu, X. Xu, B. Wang, S.-X. Sun, J. Xia, and H. Li, Oxygen vacancies mediated Bi12O17Cl2 ultrathin nanobelts: Boosting molecular oxygen activation for efficient organic pollutants degradation, Journal of Colloid and Interface Science, 23-32, 2022
    [10] X. Xu, X. Chen, G. Liu, B. Wang, M. Ji, L. Li, N. Shan, X. Yan, J. Xia, and H. Li, Pt nanoparticles mediated Bi12O17Cl2 nanosheets for enhanced organic pollutants photodegradation: Boosting kinetics and molecular oxygen activation, Ceramics International, 13289-97, 2023
    [11] Y. Wang, S. Xue, Y. Liao, Q. Lu, H. Wang, C. Zhao, N. Tang, and F. Du, MOF-Derived Bi12O17Cl2 Nanoflakes for the Photocatalytic Degradation of Bisphenol A and Tetracycline Hydrochloride under Visible Light, ACS Applied Nano Materials, 3188-98, 2024
    [12] J. Di, C. Zhu, M. Ji, M. Duan, R. Long, C. Yan, K. Gu, J. Xiong, Y. She, and J. Xia, Defect‐rich Bi12O17Cl2 nanotubes self‐accelerating charge separation for boosting photocatalytic CO2 reduction, Angewandte Chemie International Edition, 14847-51, 2018
    [13] M. Guan, N. Lu, X. Zhang, Q. Wang, J. Bao, G. Chen, H. Yu, H. Li, J. Xia, and X. Gong, Engineering of oxygen vacancy and bismuth cluster assisted ultrathin Bi12O17Cl2 nanosheets with efficient and selective photoreduction of CO2 to CO, Carbon Energy, e420, 2024
    [14] Y. Cui, D. Hu, S. Wang, J. Liu, R. Shi, and H. Wang, Preparation of carbon quantum dots/Bi12O17Cl2 semiconductor composite and its enhanced photocatalytic oxygen evolution performance, International Journal of Electrochemical Science, 100047, 2023
    [15] S. H. W. Kok, J. Lee, W.-K. Chong, B.-J. Ng, X. Y. Kong, W.-J. Ong, S.-P. Chai, and L.-L. Tan, Bismuth-rich Bi12O17Cl2 nanorods engineered with oxygen vacancy defects for enhanced photocatalytic nitrogen fixation, Journal of Alloys and Compounds, 170015, 2023
    [16] Z. Long, G. Xian, G. Zhang, T. Zhang, and X. Li, BiOCl-Bi12O17Cl2 nanocomposite with high visible-light photocatalytic activity prepared by an ultrasonic hydrothermal method for removing dye and pharmaceutical, Chinese Journal of Catalysis, 464-73, 2020
    [17] X. Sun, Y. Qi, L. Liao, B. Wang, H. Liu, Z. Li, and W. Zhou, In-Situ Self-Assembly of Bi/Bi12O17Cl2 three-dimensional architecture with intimate interface towards Optimized photocatalytic performance, Applied Surface Science, 163099, 2025
    [18] M. Passi and B. Pal, Recent advances on visible light active non-typical stoichiometric oxygen-rich Bi12O17Cl2 photocatalyst for environment pollution remediation, Journal of Environmental Chemical Engineering, 107688, 2022
    [19] A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, nature, 37-38, 1972
    [20] A. Fujishima and K. Honda, Electrochemical evidence for the mechanism of the primary stage of photosynthesis, Bulletin of the chemical society of Japan, 1148-50, 1971
    [21] K. Villa, J. R. Galán-Mascarós, N. López, and E. Palomares, Photocatalytic water splitting: advantages and challenges, Sustainable Energy & Fuels, 4560-69, 2021
    [22] F. Huang, A. Yan, and H. Zhao, Influences of Doping on Photocatalytic Properties of TiO₂ Photocatalyst, Semiconductor photocatalysis: materials, mechanisms and applications, 31, 2016
    [23] D. Jang, Y. Kim, J. Lee, H. Shin, and M. Kang, Dual-functional Cu-Fe Co-Doped TiO₂ photocatalyst for efficient hydrogen production and phenol degradation, Surfaces and Interfaces, 105394, 2024
    [24] X. Chen, Z. Wu, D. Liu, and Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes, Nanoscale research letters, 1-10, 2017
    [25] R. Georgekutty, M. K. Seery, and S. C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism, The Journal of Physical Chemistry C, 13563-70, 2008
    [26] L. Cheng, Q. Xiang, Y. Liao, and H. Zhang, CdS-based photocatalysts, Energy & Environmental Science, 1362-91, 2018
    [27] Q. Li, X. Li, S. Wageh, A. A. Al‐Ghamdi, and J. Yu, CdS/graphene nanocomposite photocatalysts, Advanced Energy Materials, 1500010, 2015
    [28] J. Zhao, C. Chen, and W. Ma, Photocatalytic degradation of organic pollutants under visible light irradiation, Topics in catalysis, 269-78, 2005
    [29] M. Umar and H. A. Aziz, Photocatalytic degradation of organic pollutants in water, Organic pollutants-monitoring, risk and treatment, 196-97, 2013
    [30] M. Nazim, A. A. P. Khan, A. M. Asiri, and J. H. Kim, Exploring rapid photocatalytic degradation of organic pollutants with porous CuO nanosheets: synthesis, dye removal, and kinetic studies at room temperature, ACS omega, 2601-12, 2021
    [31] S. Almaie, V. Vatanpour, M. H. Rasoulifard, and I. Koyuncu, Volatile organic compounds (VOCs) removal by photocatalysts: A review, Chemosphere, 135655, 2022
    [32] Z. Shayegan, C.-S. Lee, and F. Haghighat, TiO2 photocatalyst for removal of volatile organic compounds in gas phase–A review, Chemical Engineering Journal, 2408-39, 2018
    [33] W.-C. Lin, W.-D. Yang, I.-L. Huang, T.-S. Wu, and Z.-J. Chung, Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2− x N x catalyst, Energy & Fuels, 2192-96, 2009
    [34] V. Preethi and S. Kanmani, Photocatalytic hydrogen production, Materials Science in Semiconductor Processing, 561-75, 2013
    [35] H. Kmentová, M. F. Edelmannová, Z. Baďura, R. Zbořil, L. Obalová, Š. Kment, and K. Kočí, Tuning CO2 reduction selectivity via structural doping of TiO2 photocatalysts, Journal of CO2 Utilization, 103008, 2025
    [36] F. Zhang, X. Wang, H. Liu, C. Liu, Y. Wan, Y. Long, and Z. Cai, Recent advances and applications of semiconductor photocatalytic technology, Applied Sciences, 2489, 2019
    [37] L. Wang, L. Wang, Y. Du, X. Xu, and S. X. Dou, Progress and perspectives of bismuth oxyhalides in catalytic applications, Materials Today Physics, 100294, 2021
    [38] Y. Liu, J. Jiang, T. Li, J. Li, T. Sun, H. Liu, C. Zhao, G. Yan, M. Li, and M. Huo, Tuning charge distribution for synergistic enhancement of internal electric field in BiOCl via phosphorus-vanadium dual-doping, Applied Catalysis B: Environment and Energy, 124964, 2025
    [39] X. Wei, M. U. Akbar, A. Raza, and G. Li, A review on bismuth oxyhalide based materials for photocatalysis, Nanoscale Advances, 3353-72, 2021
    [40] X. Zhao, X. Liu, W. Chen, C. Liu, J. Zhang, L. Zhang, H. Zhou, and Z. Mao, Tuning of internal electric field and diffusion distance boosting the charge separation for photocatalytic electricity generation, Chemical Engineering Journal, 144628, 2023
    [41] D.-H. Wang, G.-Q. Gao, Y.-W. Zhang, L.-S. Zhou, A.-W. Xu, and W. Chen, Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation, Nanoscale, 7780-85, 2012
    [42] X. Zhang, X.-B. Wang, L.-W. Wang, W.-K. Wang, L. L. Long, W.-W. Li, and H.-Q. Yu, Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing {001} facets, ACS applied materials & interfaces, 7766-72, 2014
    [43] D. Kato, O. Tomita, R. Nelson, M. A. Kirsanova, R. Dronskowski, H. Suzuki, C. Zhong, C. Tassel, K. Ishida, and Y. Matsuzaki, Bi12O17Cl2 with a Sextuple Bi-O Layer Composed of Rock‐Salt and Fluorite Units and its Structural Conversion through Fluorination to Enhance Photocatalytic Activity, Advanced Functional Materials, 2204112, 2022
    [44] J. Jiang, K. Zhao, X. Xiao, and L. Zhang, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets, Journal of the American Chemical Society, 4473-76, 2012
    [45] X. Hu, Y. Xu, H. Zhu, F. Hua, and S. Zhu, Controllable hydrothermal synthesis of BiOCl nanoplates with high exposed {001} facets, Materials Science in Semiconductor Processing, 12-16, 2016
    [46] B. Li, Y. Cui, Y. Feng, C. Wu, Y. Yan, and M. Meng, Study of enhanced photocatalytic performance mechanisms towards a new binary-Bi heterojunction with spontaneously formed interfacial defects, Applied Surface Science, 147412, 2020
    [47] X. Liu, Y. Xing, Z. Liu, and C. Du, Enhanced photocatalytic activity of Bi12O17Cl2 preferentially oriented growth along [200] with various surfactants, Journal of Materials Science, 14217-30, 2018
    [48] M. Guo, H. He, J. Cao, H. Lin, and S. Chen, Novel I-doped Bi12O17Cl2 photocatalysts with enhanced photocatalytic activity for contaminants removal, Materials Research Bulletin, 205-12, 2019
    [49] Y. Jiang, W. Zhao, S. Li, S. Wang, Y. Fan, F. Wang, X. Qiu, Y. Zhu, Y. Zhang, and C. Long, Elevating photooxidation of methane to formaldehyde via TiO2 crystal phase engineering, Journal of the American Chemical Society, 15977-87, 2022
    [50] A. M. Bahmanpour, A. Hoadley, and A. Tanksale, Critical review and exergy analysis of formaldehyde production processes, Reviews in Chemical Engineering, 583-604, 2014
    [51] A. Migani and L. Blancafort, Excitonic interfacial proton-coupled electron transfer mechanism in the photocatalytic oxidation of methanol to formaldehyde on TiO2 (110), Journal of the American Chemical Society, 16165-73, 2016
    [52] C.-y. Wang, J. Rabani, D. W. Bahnemann, and J. K. Dohrmann, Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts, Journal of Photochemistry and Photobiology A: Chemistry, 169-76, 2002
    [53] F. Stubenrauch, M. Schörner, A. Bösmann, P. Schühle, and P. Wasserscheid, Photocatalytic methanol oxidation to formaldehyde in a continuous laboratory plant over Aeroxide P25, Reaction Chemistry & Engineering, 1462-73, 2024
    [54] Z. Li, A. Ivanenko, X. Meng, and Z. Zhang, Photocatalytic oxidation of methanol to formaldehyde on bismuth-based semiconductors, Journal of hazardous materials, 120822, 2019
    [55] A. P. V. Soares, M. F. Portela, and A. Kiennemann, Methanol selective oxidation to formaldehyde over iron‐molybdate catalysts, Catalysis Reviews, 125-74, 2005
    [56] Y. Chao, J. Lai, Y. Yang, P. Zhou, Y. Zhang, Z. Mu, S. Li, J. Zheng, Z. Zhu, and Y. Tan, Visible light-driven methanol dehydrogenation and conversion into 1, 1-dimethoxymethane over a non-noble metal photocatalyst under acidic conditions, Catalysis Science & Technology, 3372-78, 2018
    [57] J. Zheng, F. Chang, M. Jiao, Q. Xu, B. Deng, and X. Hu, A visible-light-driven heterojuncted composite WO3/Bi12O17Cl2: Synthesis, characterization, and improved photocatalytic performance, Journal of colloid and interface science, 20-31, 2018
    [58] K. Fang, L. Shi, L. Yao, and L. Cui, Synthesis of novel magnetically separable Fe3O4/Bi12O17Cl2 photocatalyst with boosted visible-light photocatalytic activity, Materials Research Bulletin, 110888, 2020
    [59] F. Chang, F. Wu, W. Yan, M. Jiao, J. Zheng, B. Deng, and X. Hu, Oxygen-rich bismuth oxychloride Bi12O17Cl2 materials: construction, characterization, and sonocatalytic degradation performance, Ultrasonics Sonochemistry, 105-13, 2019
    [60] D. Zhou, J. Jin, and Y. Wan, Photocatalytic degradation of tetracycline by a novel Bi12O17Cl2/Bi2WO6 Z-type heterojunction composite material: analysis of degradation pathways and mechanisms, Optical Materials, 116679, 2025
    [61] T. Gholami, H. Seifi, E. A. Dawi, M. Pirsaheb, S. Seifi, A. M. Aljeboree, A.-H. M. Hamoody, U. S. Altimari, M. A. Abass, and M. Salavati-Niasari, A review on investigating the effect of solvent on the synthesis, morphology, shape and size of nanostructures, Materials Science and Engineering: B, 117370, 2024
    [62] T. Watanabe, Y. Iso, and T. Isobe, Synthesis of Y2O3: Bi 3+, Eu 3+ nanosheets from layered yttrium hydroxide precursor and their photoluminescence properties, RSC Advances, 14107-13, 2017
    [63] Y. Lei, G. Wang, S. Song, W. Fan, and H. Zhang, Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties, CrystEngComm, 1857-62, 2009
    [64] H. Li, T. Zhang, X. Tang, J. Zhong, J. Li, Z. Du, and Y. Dan, Effectively destruction of rhodamine B and perfluorooctanoic acid over BiOCl with boosted separation ability of carriers benefited from tunable oxygen vacancies, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 129470, 2022
    [65] H. Jiang, H. Dai, X. Meng, K. Ji, L. Zhang, and J. Deng, Porous olive-like BiVO4: Alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol, Applied Catalysis B: Environmental, 326-34, 2011
    [66] Y. Li, J. Liu, X. Huang, and G. Li, Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres, Crystal growth & design, 1350-55, 2007
    [67] F.-L. Li and H.-J. Zhang, Synthesis of hollow sphere and 1D structural materials by sol-gel process, Materials, 995, 2017
    [68] R. Buonsanti, V. Grillo, E. Carlino, C. Giannini, T. Kipp, R. Cingolani, and P. D. Cozzoli, Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals, Journal of the American Chemical Society, 11223-33, 2008
    [69] X. Dai, L. Cui, L. Yao, and L. Shi, Facile construction of novel Co3O4/ Bi12O17Cl2 heterojunction composites with enhanced photocatalytic performance, Journal of Solid State Chemistry, 122066, 2021
    [70] L.-C. Tien, Y.-L. Lin, and S.-Y. Chen, Synthesis and characterization of Bi12O17Cl2 nanowires obtained by chlorination of α-Bi2O3 nanowires, Materials Letters, 30-33, 2013
    [71] Y. Marcus, Ionic radii in aqueous solutions, Chemical Reviews, 1475-98, 1988
    [72] K.-L. Zhang, C.-M. Liu, F.-Q. Huang, C. Zheng, and W.-D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst, Applied Catalysis B: Environmental, 125-29, 2006
    [73] Y. Myung, F. Wu, S. Banerjee, A. Stoica, H. Zhong, S.-S. Lee, J. Fortner, L. Yang, and P. Banerjee, Highly conducting, n-type Bi12O15Cl6 nanosheets with superlattice-like structure, Chemistry of Materials, 7710-18, 2015
    [74] Q. Zhang, S. Li, R. Jing, M. Wu, S. Zhao, A. Liu, Y. Liu, and Z. Meng, Superlattice assembly of two dimensional CoFe-LDHs nanosheets and titania nanosheets nanohybrids for high visible light photocatalytic activity, Materials Letters, 374-77, 2019
    [75] F. Dong, Z. Wang, Y. Li, W.-K. Ho, and S. Lee, Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination, Environmental science & technology, 10345-53, 2014
    [76] X. Xu, X. Yang, Y. Tao, W. Zhu, X. Ding, J. Zhu, and H. Chen, Enhanced exciton effect and singlet oxygen generation triggered by tunable oxygen vacancies on Bi2MoO6 for efficient photocatalytic degradation of sodium pentachlorophenol, International Journal of Molecular Sciences, 15221, 2022
    [77] P. Bilski, K. Reszka, M. Bilska, and C. Chignell, Oxidation of the spin trap 5, 5-dimethyl-1-pyrroline N-oxide by singlet oxygen in aqueous solution, Journal of the American Chemical Society, 1330-38, 1996
    [78] A. Lawrence, C. M. Jones, P. Wardman, and M. J. Burkitt, Evidence for the role of a peroxidase compound I-type intermediate in the oxidation of glutathione, NADH, ascorbate, and dichlorofluorescin by cytochrome c/H2O2: implications for oxidative stress during apoptosis, Journal of Biological Chemistry, 29410-19, 2003
    [79] C. Chen, F. Li, H.-L. Chen, and M. G. Kong, Interaction between air plasma-produced aqueous 1O2 and the spin trap DMPO in electron spin resonance, Physics of plasmas, 2017
    [80] T. Daimon and Y. Nosaka, Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detection of near-infrared phosphorescence, The Journal of Physical Chemistry C, 4420-24, 2007
    [81] Y. Nosaka and A. Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis, Chemical reviews, 11302-36, 2017
    [82] G. Shao, Work function and electron affinity of semiconductors: Doping effect and complication due to fermi level pinning, Energy & Environmental Materials, 273-76, 2021
    [83] W. A. Donald, R. D. Leib, J. T. O'Brien, M. F. Bush, and E. R. Williams, Absolute standard hydrogen electrode potential measured by reduction of aqueous nanodrops in the gas phase, Journal of the American Chemical Society, 3371-81, 2008
    [84] C. M. C. Andrés, J. M. Pérez de la Lastra, C. Andrés Juan, F. J. Plou, and E. Pérez-Lebeña, Superoxide anion chemistry—Its role at the core of the innate immunity, International journal of molecular sciences, 1841, 2023
    [85] J.-Y. Liu, Y. Bai, P.-Y. Luo, and P.-Q. Wang, One-pot synthesis of graphene–BiOBr nanosheets composite for enhanced photocatalytic generation of reactive oxygen species, Catalysis Communications, 58-61, 2013
    [86] A. Inaguma, H. Nagakawa, S. Kamata, and M. Nagata, Influence of Sacrificial Reagents on the Photodeposition Reaction of Cocatalysts, Advanced Energy and Sustainability Research, 2300295, 2024
    [87] X. Zhang, B. Peng, S. Zhang, and T. Peng, Robust wide visible-light-responsive photoactivity for H2 production over a polymer/polymer heterojunction photocatalyst: the significance of sacrificial reagent, ACS Sustainable Chemistry & Engineering, 1501-09, 2015
    [88] J. Zhuang, W. Dai, Q. Tian, Z. Li, L. Xie, J. Wang, P. Liu, X. Shi, and D. Wang, Photocatalytic degradation of RhB over TiO2 bilayer films: effect of defects and their location, Langmuir, 9686-94, 2010
    [89] T. Liu, L. Wang, X. Lu, J. Fan, X. Cai, B. Gao, R. Miao, J. Wang, and Y. Lv, Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: adsorption, active species, and pathways, RSC advances, 12292-300, 2017
    [90] H. Liang, S. Liu, H. Zhang, X. Wang, and J. Wang, New insight into the selective photocatalytic oxidation of RhB through a strategy of modulating radical generation, RSC advances, 13625-34, 2018
    [91] K. Yu, S. Yang, H. He, C. Sun, C. Gu, and Y. Ju, Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism, The Journal of Physical Chemistry A, 10024-32, 2009
    [92] E. Jiang, L. Yang, N. Song, X. Zhang, C. Liu, and H. Dong, Multi-shelled hollow cube CaTiO3 decorated with Bi12O17Cl2 towards enhancing photocatalytic performance under the visible light, Journal of Colloid and Interface Science, 21-33, 2020
    [93] Z. Liu, Z. Sun, X. Sun, Z. Cui, S. Sun, H. Zhang, X. Jiang, and X. Wang, Assembling a S-type heterostructure photocatalyst of Bi12O17Cl2/CuBi2O4 to reduce CO2 into CO, Journal of Alloys and Compounds, 175029, 2024
    [94] H. Wang, H. Qi, X. Sun, S. Jia, X. Li, T. J. Miao, L. Xiong, S. Wang, X. Zhang, and X. Liu, High quantum efficiency of hydrogen production from methanol aqueous solution with PtCu–TiO2 photocatalysts, Nature Materials, 619-26, 2023
    [95] M. Xiao, A. Baktash, M. Lyu, G. Zhao, Y. Jin, and L. Wang, Unveiling the role of water in heterogeneous photocatalysis of methanol conversion for efficient hydrogen production, Angewandte Chemie, e202402004, 2024
    [96] S. Zhao, Y. Yang, F. Bi, Y. Chen, M. Wu, X. Zhang, and G. Wang, Oxygen vacancies in the catalyst: Efficient degradation of gaseous pollutants, Chemical Engineering Journal, 140376, 2023
    [97] Q. Chen, X. Cheng, H. Long, and Y. Rao, A short review on recent progress of Bi/semiconductor photocatalysts: The role of Bi metal, Chinese Chemical Letters, 2583-90, 2020
    [98] 陳卉淳, 氯化氧鉍之形貌於光催化降解有機染料及氨氮影響 (Morphological Effects of BiOCl on Photocatalytic Degradation of Organic Dyes and Ammonia, 國 立成功大學資源工程學系碩士論文, 2024.
    [99] F. Chang, X. Wang, J. Luo, J. Wang, Y. Xie, B. Deng, and X. Hu, Ag/Bi12O17Cl2 composite: a case study of visible-light-driven plasmonic photocatalyst, Molecular Catalysis, 45-53, 2017
    [100] F. Chang, B. Lei, X. Zhang, Q. Xu, H. Chen, B. Deng, and X. Hu, The reinforced photocatalytic performance of binary-phased composites Bi-Bi12O17Cl2 fabricated by a facile chemical reduction protocol, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 290-98, 2019
    [101] J. Hu, G. Xu, J. Wang, J. Lv, X. Zhang, Z. Zheng, T. Xie, and Y. Wu, Photocatalytic properties of Bi/BiOCl heterojunctions synthesized using an in situ reduction method, New Journal of Chemistry, 4913-21, 2014

    無法下載圖示 校內:2030-06-25公開
    校外:2030-06-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE