| 研究生: |
陳信錩 Chen, Hsin-Chang |
|---|---|
| 論文名稱: |
含可更替阻尼之鋼結構梁柱接頭設計與耐震性能評估 Performance evaluation of a steel beam-column connection with a replaceable damper |
| 指導教授: |
鍾育霖
Chung, Yu-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 傳統接頭 、脆性破壞 、震後修復 、靜態反覆加載實驗 |
| 外文關鍵詞: | Beam-column connection, brittle fracture, repair |
| 相關次數: | 點閱:17 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一種創新含可更替鋼阻尼板之梁柱接頭構法,使接頭受力時的塑性行為發生與此透過螺栓固定的可更替鋼板元件,震後透過更換則可回復接頭性能,藉此提升鋼構建築耐震堅韌性。研究動機係源自歷次強震顯示,不論是早期韌性不佳的梁柱接頭或是後期發展的韌性接頭,在強震過後都需要修復回復或增加其性能,由於修復現場常有空間或是防火等限制,加上現場需要焊接、切割等作業,使得修復不僅代價高昂且耗時,難以於災後迅速恢復結構功能。為此,本研究以損傷控制概念設計之新型接頭上翼板仍維持工地現場全滲透焊接,腹板以螺栓與預先焊接於柱面剪力板固定,下翼板則以螺栓分別將切削阻尼鋼板兩端固定於梁下翼板以及預先於柱面焊接的續接鋼板上,使下翼板應力傳遞不中斷,同時阻尼鋼板中間透過切削控制強度也使塑性行為集中於此處。
本研究透過足尺靜態反覆加載試驗了解接頭性能並驗證設計方法,實驗設計部分,採用兩組具代表性幾何條件之足尺試體,分別變化阻尼板削弱寬度與上翼板削弱形式,進行靜態反覆加載試驗。試驗內容涵蓋初次與更換阻尼鋼板後之性能比較,量測指標包含接頭強度、塑性比、應變分布與耗能能力。研究結果顯示,本構法可有效集中塑性變形於預設區域,並避免焊接熱影響區劣化,且在阻尼板更換後仍可恢復接近原始性能之耐震行為,展現良好之可修復潛力。
本研究成果可作為未來鋼構梁柱接頭損傷控制設計與災後修復技術發展之依據,尤適用於對施工干擾容忍度低之重要建築,如醫療院所或高科技廠房,對我國既有鋼構建築耐震韌性提升與震後快速重建具實質貢獻。
This study proposes an innovative beam-to-column connection featuring replaceable steel damper plates, aiming to enhance seismic resilience and post-earthquake reparability of steel structural systems. Motivated by observed brittle failures at welded moment connections during past major earthquakes, which were often concentrated in the heat-affected zones (HAZ), this research seeks to address the limitations of traditional welded joints by introducing a bolted, damage controllable mechanism. The design enables plastic deformation to be concentrated within the damper plate, which can be easily replaced after an earthquake, thereby minimizing the need for on-site high-temperature welding or cutting. Two full-scale test specimens with different geometric parameters-specifically, varying damper plate widths and upper flange weakening configurations—were constructed and subjected to quasi-static cyclic loading. Experimental parameters included initial and post-replacement behavior of the damper plates. Key performance indicators such as connection strength, plastic rotation capacity, strain distribution, and energy dissipation were measured and analyzed. The results confirmed that the proposed system effectively localized plasticity in the damper plate, mitigated degradation in the HAZ, and maintained seismic performance after component replacement, demonstrating its potential for practical reparability. The findings of this study contribute to the development of seismic repair strategies and damage-control design guidelines for steel structures. This connection system is particularly applicable to critical facilities where construction disturbance must be minimized, such as hospitals, semiconductor plants, and office buildings. It provides a practical solution for enhancing the seismic resilience and post-disaster recovery capabilities of existing steel buildings in Taiwan.
[1] Kasai, K., Hodgson, I., & Bleiman, D. (1998). Rigid-bolted repair method for damaged moment connections. Engineering structures, 20(4-6), 521-532.
[2] Mander, T. J., Rodgers, G. W., Chase, J. G., Mander, J. B., MacRae, G. A., & Dhakal, R. P. (2009). Damage avoidance design steel beam-column moment connection using high-force-to-volume dissipators. Journal of structural engineering, 135(11), 1390-1397.
[3] Park, H. Y., & Oh, S. H. (2019). Design range of the damper of a T-stub damage-controlled system. Journal of Constructional Steel Research, 162, 105719.
[4] Tagawa, H., Nagoya, Y., & Chen, X. (2020). Bolted beam-to-column connection with buckling-restrained round steel bar dampers. Journal of Constructional Steel Research, 169, 106036.
[5] Oh, S. H., Kim, Y. J., & Ryu, H. S. (2009). Seismic performance of steel structures with slit dampers. Engineering structures, 31(9), 1997-2008.
[6] Francavilla, A. B., Latour, M., Piluso, V., & Rizzano, G. (2020). Design criteria for beam-to-column connections equipped with friction devices. Journal of Constructional Steel Research, 172, 106240.