| 研究生: |
陳家怡 Chen, Chia-Yi |
|---|---|
| 論文名稱: |
負載順鉑的奈米藥物透過損傷溶酶體誘導鐵死亡與自噬失調增強三陰性乳癌的放射敏感性 Cisplatin-Loaded Nanomedicine Enhances Radiosensitivity by Inducing Ferroptosis and Autophagy Dysfunction via Impairment of Lysosomes in Triple-Negative Breast Cancer |
| 指導教授: |
王應然
Wang, Ying-Jan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 三陰性乳癌 、放射療法 、順鉑 、奈米金 、溶酶體失調 、鐵死亡 、細胞自噬 |
| 外文關鍵詞: | Triple-negative breast cancer, Radiotherapy, Cisplatin, Gold nanoparticle, Lysosomal dysfunction, Ferroptosis, Autophagy |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
據世界衛生組織於2020年的統計,乳癌是全球最常被診斷出的癌症,且其死亡率高,而其中大約有15至20%的患者屬於三陰性乳癌,其雌激素受體、黃體素受體與第二型人類上皮生長因子受體表達均呈陰性,因而無法使用賀爾蒙療法與標靶療法,而大多只能使用放射療法與化學療法進行治療。順鉑是一種有效的化療藥物,廣泛用於治療實體瘤,如乳腺癌、睾丸癌、卵巢癌、肺癌與頭頸癌等。在臨床上,順鉑經常被用作放射增敏劑,它可以與DNA結合形成鉑與DNA的鍵結物,使癌細胞DNA更容易受到游離輻射的傷害,進而引起更多的DNA損傷,對癌症的治療達到加成的效果。然而,傳統的化療藥物在臨床上依舊面臨著許多問題,如因缺乏標靶能力而導致嚴重的副作用等。因此,近年來,奈米技術在生物醫學領域上蓬勃發展。與傳統的抗癌藥物相比,奈米技術具有許多優勢。奈米藥物能夠透過靶向遞送,來減輕全身毒性,同時提高目標部位的治療效果。因此,本研究想設計一種奈米藥物來改善順鉑在治療上的嚴重問題。我們使用具有腫瘤靶向能力的褐藻醣膠進行載體修飾,使用pH敏感的苯乙烯馬來酸酐共聚物負載順鉑。我們將探討奈米藥物是否可以透過溶酶體損傷,誘導鐵死亡和自噬失調來增強三陰性乳癌對放射線的敏感性。
奈米藥物由實驗室自行合成,並分析其物化特性。細胞實驗使用人類三陰性乳癌細胞MDA-MB-231-Luc細胞,並分成三個方面進行探討,分別是細胞對奈米藥物的攝取、有效性與機制探討,以細胞存活率、螢光顯微鏡、流式細胞儀、西方墨點法與免疫螢光染色等方法,觀察細胞存活狀況、溶酶體功能、細胞凋亡、鐵死亡與細胞自噬等相關分子機制。動物實驗使用NOD scid小鼠的原位異種移植模式,探討聯合療法的抗腫瘤功效,並以血清生化值與器官切片染色評估奈米藥物的生物安全性。
由奈米藥物的X射線能量散布分析儀、紫外光光譜與傅立葉轉換紅外線光譜之結果證實成功合成出目標奈米藥物,且其平均水合粒徑為137.0奈米,界面電位為-67.3毫伏,表示奈米藥物的分散性穩定。細胞實驗結果顯示,與人類正常乳腺上皮細胞MCF-10A相比,P選滯蛋白在乳癌細胞中表達較多,並且在人類三陰性乳癌MDA-MB-231-Luc中的表現量是最高的,因此後續會選用MDA-MB-231-Luc細胞來進行實驗。接著在細胞存活率試驗中,看到隨著奈米藥物與放射線的劑量上升,MDA-MB-231-Luc細胞的存活率隨之下降,並且經計算後奈米藥物結合放射線是具有協同作用的,後續則選擇Au@PSMA-cis-fu 25 μg/mL合併放射線6 Gy來進行細胞實驗。在機制探討的研究結果中,看到奈米藥物可以在溶酶體內積累,並透過誘導溶酶體鹼化和膨脹,進一步導致MDA-MB-231-Luc細胞的溶酶體膜透化。此外,合併療法誘導MDA-MB-231-Luc細胞的凋亡、鐵死亡和自噬失調。動物實驗的結果顯示,合併療法相比單獨療法,能夠更好地抑制原位乳腺腫瘤的生長。
目前奈米藥物之合成步驟已經確定,並且已透過紫外光光譜、傅立葉轉換紅外線光譜與動態光散射儀等儀器確認奈米藥物的確實合成以及其物化特性。而在細胞實驗中也透過檢測P選滯蛋白之表達來選定細胞株,並且以藥物合併指數選擇後續實驗將使用的奈米藥物與放射線劑量。此外,也觀察到合併療法可以透過損傷溶酶體,誘導細胞凋亡、鐵死亡與自噬失調。在體內研究中,合併療法具有良好的抗腫瘤功效。綜上所述,我們的實驗結果證實奈米藥物Au@PSMA-cis-fu與放射線的合併療法在三陰性乳癌的治療中是具有潛力的。
In this study, human triple-negative breast cancer cells MDA-MB-231-Luc were used to investigate the effect and molecular mechanism of cisplatin-loaded nanomedicine, Au@PSMA-cis-fu, combined with radiation on cancer treatment. The results of in vitro test showed that Au@PSMA-cis-fu accumulated in the lysosome following cellular uptake. Then, gold nanoparticles in Au@PSMA-cis-fu induced lysosomal alkalinization and enlargement, which further caused lysosomal membrane permeabilization. After the combination treatment with radiation, the lysosome damage induced by Au@PSMA-cis-fu further caused the cancer cells death through apoptosis and ferroptosis. Additionally, lysosomal dysfunction also leaded to the blockage of autophagic flux, preventing the radioresistane of cancer cells via autophagy. In order to achieve the effect of radiosensitivity, in the in vivo study, we can verify that the combination treatment of Au@PSMA-cis-fu and radiation had great tumor suppression activity in MDA-MB-231-Luc tumor-bearing mice. However, the toxicity and side effects of nanomedicines on healthy tissues could still be observed in vivo. Therefore, we should be careful of the selection of doses.
1. Abratt RP, Willcox PA, Salton DM. 1992. Concurrent radiation and weekly cisplatin for non-small-cell lung cancer—a phase i/ii study. Cancer chemotherapy and pharmacology 30:495-497.
2. Annede P, Cosset J-M, Van Limbergen E, Deutsch E, Haie-Meder C, Chargari C. Radiobiology: Foundation and new insights in modeling brachytherapy effects. In: Proceedings of the Seminars in radiation oncology, 2020, Vol. 30Elsevier, 4-15.
3. Bellon JR, Chen Y-H, Rees R, Taghian AG, Wong JS, Punglia RS, et al. 2021. A phase 1 dose-escalation trial of radiation therapy and concurrent cisplatin for stage ii and iii triple-negative breast cancer. International Journal of Radiation Oncology* Biology* Physics.
4. Benoit DS, Henry SM, Shubin AD, Hoffman AS, Stayton PS. 2010. Ph-responsive polymeric sirna carriers sensitize multidrug resistant ovarian cancer cells to doxorubicin via knockdown of polo-like kinase 1. Molecular pharmaceutics 7:442-455.
5. Benoit DSW, Henry SM, Shubin AD, Hoffman AS, Stayton PS. 2010. Ph-responsive polymeric sirna carriers sensitize multidrug resistant ovarian cancer cells to doxorubicin via knockdown of polo-like kinase 1. Molecular pharmaceutics 7:442-455.
6. Berbeco RI, Ngwa W, Makrigiorgos GM. 2011. Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage x-rays and targeted gold nanoparticles: New potential for external beam radiotherapy. International Journal of Radiation Oncology* Biology* Physics 81:270-276.
7. Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P. 2011. Inorganic nanoparticles in cancer therapy. Pharmaceutical research 28:237-259.
8. Biswas SK, Huang J, Persaud S, Basu A. 2004. Down-regulation of bcl-2 is associated with cisplatin resistance in human small cell lung cancer h69 cells. Molecular cancer therapeutics 3:327-334.
9. Blanco E, Shen H, Ferrari M. 2015. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature biotechnology 33:941-951.
10. Chen F, Pu F. 2017. Role of postmastectomy radiotherapy in early-stage (t1–2n0–1m0) triple-negative breast cancer: A systematic review. OncoTargets and therapy 10:2009.
11. Chen Y, Fan Z, Hu S, Lu C, Xiang Y, Liao S. 2022. Ferroptosis: A new strategy for cancer therapy. Frontiers in oncology 12.
12. Chen YS, Hung YC, Liau I, Huang GS. 2009. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale research letters 4:858-864.
13. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. 2007. Renal clearance of quantum dots. Nature biotechnology 25:1165-1170.
14. Chu P-Y, Tsai S-C, Ko H-Y, Wu C-C, Lin Y-H. 2019. Co-delivery of natural compounds with a dual-targeted nanoparticle delivery system for improving synergistic therapy in an orthotopic tumor model. ACS applied materials & interfaces 11:23880-23892.
15. Dasari S, Tchounwou PB. 2014. Cisplatin in cancer therapy: Molecular mechanisms of action. European journal of pharmacology 740:364-378.
16. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. 2012. Ferroptosis: An iron-dependent form of nonapoptotic cell death. cell 149:1060-1072.
17. Fong CW. 2016. Platinum based radiochemotherapies: Free radical mechanisms and radiotherapy sensitizers. Free Radical Biology and Medicine 99:99-109.
18. Fukuda S, Okajima K, Okada K, Fukuda K, Wakasa T, Tsujimoto T, et al. 2021. Postoperative solitary liver metastasis from esophageal squamous cell carcinoma achieving a clinical complete response to chemotherapy with cisplatin and 5-fluorouracil followed by stereotactic body radiotherapy: A case report. Molecular and clinical oncology 15:130.
19. Glick D, Barth S, Macleod KF. 2010. Autophagy: Cellular and molecular mechanisms. The Journal of pathology 221:3-12.
20. González-Martín R, Pacheco-Fernández I, Maiti B, Ayala JH, Afonso AM, Díaz DD, et al. 2020. Use of a ph-sensitive polymer in a microextraction and preconcentration method directly combined with high-performance liquid chromatography. Journal of chromatography A 1619:460910.
21. Guo J, Xu B, Han Q, Zhou H, Xia Y, Gong C, et al. 2018. Ferroptosis: A novel anti-tumor action for cisplatin. Cancer research and treatment 50:445-460.
22. Henry SM, El-Sayed MEH, Pirie CM, Hoffman AS, Stayton PS. 2006. Ph-responsive poly(styrene-alt-maleic anhydride) alkylamide copolymers for intracellular drug delivery. Biomacromolecules 7:2407-2414.
23. Her S, Jaffray DA, Allen C. 2017. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced drug delivery reviews 109:84-101.
24. Isoda K, Tanaka A, Fuzimori C, Echigoya M, Taira Y, Taira I, et al. 2020. Toxicity of gold nanoparticles in mice due to nanoparticle/drug interaction induces acute kidney damage. Nanoscale research letters 15:141.
25. Jafari M, Sriram V, Xu Z, Harris GM, Lee J-Y. 2020. Fucoidan-doxorubicin nanoparticles targeting p-selectin for effective breast cancer therapy. Carbohydrate Polymers 249:116837.
26. Jiang W, Li Q, Zhu Z, Wang Q, Dou J, Zhao Y, et al. 2018. Cancer chemoradiotherapy duo: Nano-enabled targeting of DNA lesion formation and DNA damage response. ACS applied materials & interfaces 10:35734-35744.
27. Jiang Z, Wang Y, Sun L, Yuan B, Tian Y, Xiang L, et al. 2019. Dual atp and ph responsive zif-90 nanosystem with favorable biocompatibility and facile post-modification improves therapeutic outcomes of triple negative breast cancer in vivo. Biomaterials 197:41-50.
28. Kemp JA, Kwon YJ. 2021. Cancer nanotechnology: Current status and perspectives. Nano convergence 8:34.
29. Khaleel RA. 2021. Autophagy as a molecular target for cancer treatment. European Journal of Molecular & Clinical Medicine 8:1946-1962.
30. Khazaei A, Saednia S, Saien J, Kazem-Rostami M, Sadeghpour M, Borazjani MK, et al. 2013. Grafting amino drugs to poly(styrene-alt-maleic anhydride) as a potential method for drug release. Journal of the Brazilian Chemical Society 24:1109-1115.
31. Kim BM, Hong Y, Lee S, Liu P, Lim JH, Lee YH, et al. 2015. Therapeutic implications for overcoming radiation resistance in cancer therapy. International journal of molecular sciences 16:26880-26913.
32. Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, et al. 2019. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of slc7a11. Cancer discovery 9:1673-1685.
33. Lee J, Czarnota G, Hew-Shue M, Gandhi S. 2017. Radiotherapy with and without concurrent cisplatin for unresectable or inoperable locally advanced triple negative breast cancer. International Journal of Radiation Oncology• Biology• Physics 99:E28-E29.
34. Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, et al. 2020. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell research 30:146-162.
35. Lei G, Mao C, Yan Y, Zhuang L, Gan B. 2021. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein & cell 12:836-857.
36. Longmire M, Choyke PL, Kobayashi H. 2008. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine (London, England) 3:703-717.
37. Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, Bettmer J, Llopis J, Sanchez-Gonzalez C. 2018. Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine : nanotechnology, biology, and medicine 14:1-12.
38. Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. 2018. The role of ferroptosis in cancer development and treatment response. Frontiers in pharmacology 8:992.
39. Lu K-Y, Li R, Hsu C-H, Lin C-W, Chou S-C, Tsai M-L, et al. 2017. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydrate polymers 165:410-420.
40. Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, et al. 2011. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS nano 5:8629-8639.
41. Maier P, Hartmann L, Wenz F, Herskind C. 2016. Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. International journal of molecular sciences 17:102.
42. Majumder J, Taratula O, Minko T. 2019. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Advanced drug delivery reviews 144:57-77.
43. Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, et al. 2020. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox biology 28:101328.
44. Nabil G, Alzhrani R, Alsaab HO, Atef M, Sau S, Iyer AK, et al. 2021. Cd44 targeted nanomaterials for treatment of triple-negative breast cancer. Cancers 13:898.
45. Oleinick NL, Biswas T, Patel R, Tao M, Patel R, Weeks L, et al. 2016. Radiosensitization of non-small-cell lung cancer cells and xenografts by the interactive effects of pemetrexed and methoxyamine. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 121:335-341.
46. Park JH, Ahn JH, Kim SB. 2018. How shall we treat early triple-negative breast cancer (tnbc): From the current standard to upcoming immuno-molecular strategies. ESMO Open 3:e000357.
47. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, et al. 2018. Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology 16:71.
48. Peng S, Ouyang B, Xin Y, Zhao W, Shen S, Zhan M, et al. 2021. Hypoxia-degradable and long-circulating zwitterionic phosphorylcholine-based nanogel for enhanced tumor drug delivery. Acta Pharmaceutica Sinica B 11:560-571.
49. Penninckx S, Heuskin A-C, Michiels C, Lucas S. 2020. Gold nanoparticles as a potent radiosensitizer: A transdisciplinary approach from physics to patient. Cancers 12:2021.
50. Penninckx S, Heuskin AC, Michiels C, Lucas S. 2020. Gold nanoparticles as a potent radiosensitizer: A transdisciplinary approach from physics to patient. Cancers 12.
51. Perše M, Večerić-Haler Ž. 2018. Cisplatin-induced rodent model of kidney injury: Characteristics and challenges. BioMed research international 2018.
52. Philippou Y, Sjoberg H, Lamb AD, Camilleri P, Bryant RJ. 2020. Harnessing the potential of multimodal radiotherapy in prostate cancer. Nature Reviews Urology 17:321-338.
53. Pierzynowska K, Rintz E, Gaffke L, Węgrzyn G. 2021. Ferroptosis and its modulation by autophagy in light of the pathogenesis of lysosomal storage diseases. Cells 10.
54. Qiu R, Sun D, Bai Y, Li J, Wang L. 2020. Application of tumor-targeting peptide-decorated polypeptide nanoparticles with doxorubicin to treat osteosarcoma. Drug Delivery 27:1704-1717.
55. Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFM. 2018. DNA repair pathways and cisplatin resistance: An intimate relationship. Clinics 73.
56. Roh Y-J, Rho CR, Cho W-K, Kang S. 2016. The antiangiogenic effects of gold nanoparticles on experimental choroidal neovascularization in mice. Investigative ophthalmology & visual science 57:6561-6567.
57. Sanjeewa K, Jeon Y-J. 2021. Fucoidans as scientifically and commercially important algal polysaccharides.Multidisciplinary Digital Publishing Institute.
58. Shamay Y, Elkabets M, Li H, Shah J, Brook S, Wang F, et al. 2016. P-selectin is a nanotherapeutic delivery target in the tumor microenvironment. Science translational medicine 8:345ra387-345ra387.
59. Sápi J, Kovács L, Drexler DA, Kocsis P, Gajári D, Sápi Z. 2015. Tumor volume estimation and quasi-continuous administration for most effective bevacizumab therapy. PloS one 10:e0142190.
60. Sun C, Lu J, Wang J, Hao P, Li C, Qi L, et al. 2021. Redox-sensitive polymeric micelles with aggregation-induced emission for bioimaging and delivery of anticancer drugs. Journal of Nanobiotechnology 19:1-15.
61. Sun LL, Linghu DL, Hung MC. 2021. Ferroptosis: A promising target for cancer immunotherapy. American journal of cancer research 11:5856-5863.
62. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. 2021. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 71:209-249.
63. Tiloke C, Phulukdaree A, Anand K, Gengan RM, Chuturgoon AA. 2016. Moringa oleifera gold nanoparticles modulate oncogenes, tumor suppressor genes, and caspase‐9 splice variants in a549 cells. Journal of cellular biochemistry 117:2302-2314.
64. Tonissi F, Lattanzio L, Astesana V, Cavicchioli F, Ghiglia A, Monteverde M, et al. 2016. Reoxygenation reverses hypoxia-related radioresistance in head and neck cancer cell lines. Anticancer research 36:2211-2215.
65. Vagia E, Mahalingam D, Cristofanilli M. 2020. The landscape of targeted therapies in tnbc. Cancers 12:916.
66. Verma N, Vinik Y, Saroha A, Nair NU, Ruppin E, Mills G, et al. 2020. Synthetic lethal combination targeting bet uncovered intrinsic susceptibility of tnbc to ferroptosis. Science advances 6.
67. Wang F, Gómez-Sintes R, Boya P. 2018a. Lysosomal membrane permeabilization and cell death. Traffic (Copenhagen, Denmark) 19:918-931.
68. Wang F, Salvati A, Boya P. 2018b. Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open biology 8.
69. Wang F, Chuner J, Lei W, Fengqin Y, Zhimin Y, Quanquan S, et al. 2020. Optimal induction chemotherapeutic regimen followed by concurrent chemotherapy plus intensity-modulated radiotherapy as first-line therapy for locoregionally advanced nasopharyngeal carcinoma. Medicine 99:e22283.
70. Wang Y, Zhao M, He S, Luo Y, Zhao Y, Cheng J, et al. 2019. Necroptosis regulates tumor repopulation after radiotherapy via rip1/rip3/mlkl/jnk/il8 pathway. Journal of experimental & clinical cancer research : CR 38:461.
71. Wong AD, Ye M, Ulmschneider MB, Searson PC. 2015. Quantitative analysis of the enhanced permeation and retention (epr) effect. PloS one 10:e0123461.
72. Wu J. 2021. The enhanced permeability and retention (epr) effect: The significance of the concept and methods to enhance its application. Journal of personalized medicine 11.
73. Wu Y, Yu C, Luo M, Cen C, Qiu J, Zhang S, et al. 2020. Ferroptosis in cancer treatment: Another way to rome. Frontiers in oncology 10:571127.
74. Xi H, Yang L, Chen J. 2013. Synthesis and characterization of ph- and temperature-sensitive hydrogels of poly (styrene-alt-maleic anhydride)-co-pluronic for drug release. Journal of Macromolecular Science, Part B 52:1198-1211.
75. Xue M, Ji X, Xue C, Liang H, Ge Y, He X, et al. 2017. Caspase-dependent and caspase-independent induction of apoptosis in breast cancer by fucoidan via the pi3k/akt/gsk3β pathway in vivo and in vitro. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 94:898-908.
76. Yang Y, Zheng X, Chen L, Gong X, Yang H, Duan X, et al. 2022. Multifunctional gold nanoparticles in cancer diagnosis and treatment. International journal of nanomedicine 17:2041-2067.
77. Ye LF, Chaudhary KR, Zandkarimi F, Harken AD, Kinslow CJ, Upadhyayula PS, et al. 2020. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS chemical biology 15:469-484.
78. Zeng D, Liang YK, Xiao YS, Wei XL, Lin HY, Wu Y, et al. 2020. Inhibition of notch1 reverses emt and chemoresistance to cisplatin via direct downregulation of mcam in triple‐negative breast cancer cells. International journal of cancer 147:490-504.
79. Zhang X, Sui S, Wang L, Li H, Zhang L, Xu S, et al. 2020. Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. Journal of cellular physiology 235:3425-3437.
80. Zlibut A, Bocsan IC, Agoston-Coldea L. 2019. Pentraxin-3 and endothelial dysfunction. Advances in clinical chemistry 91:163-179.
校內:2026-02-06公開