簡易檢索 / 詳目顯示

研究生: 陳昱任
Chen, Yu-Ren
論文名稱: 基於狀態變數與Hermite型置點法之移動最小二乘法在二維彈性力學之應用
The Moving Least Square Methods Based on State Variables and Hermite Type Collocation for The Analysis of Two Dimensional Elasticity Problems
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 94
中文關鍵詞: 無元素法移動最小二乘法二維彈性力學
外文關鍵詞: Meshless method, Moving Least Square, Two dimensional elasticity
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採用了基於狀態變數(State Variable)與Hermite型置點法(Hermite Type Collocation)之移動最小二乘法(Moving Least Square Method)來模擬二維彈性力學問題。狀態變數法是將原本為高階導數控制方程式以狀態空間(State Space)之概念,將其降階為多個低階導數方程式,再由移動最小二乘法理論求解變數;Hermite型置點法則只對主要變數進行近似,而在置點時將導數項變數同時納入置點,在此兩種變數設定下求解導數近似函數不需再做數值微分計算,即也可一次求解出所有變數。
    本文模擬分析了懸臂梁受剪力、拉力作用,及無限板中央水平裂縫、中央開圓孔受拉力作用等二維彈性力學問題,經由改變基底階數、佈點型式、佈點密度等變因,與解析解或其問題本質之物理現象做比較,以討論數值方法模擬成果及適用性。

    In this thesis, we use the moving least square methods which based on state variables and Hermite type collocation to analysis the two dimensional elasticity problem. In the state variable approach, we use the concept of state space which reduces the original higher-order differential equations to the systems of first-order differential equations, then solving these equations by the moving least square method. In the Hermite type collocation method, only the essential variables are approximated, and there derivatives are considered in the collocation. With these two kind of variables setting, we can solve all of the variables without any numerical differentiation.

    Using the present method, this paper simulates the cantilever beams loaded by shear force or tensile force, and the infinite plates which have a central horizontal crack or a central hole loaded by the tensile force. In the example, we change different order of the base function, different types of the distribution and the different density of the distribution to compare with the exact solution or physical phenomena, and then discuss the results of numerical simulation and applicability.

    目錄 摘要 I Abstract II 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 無元素法之發展 2 1.3 文章架構 4 第二章 彈性力學公式推導 5 2.1 平面應力與平面應變之相互關係 5 2.2 二維彈性力學控制方程式 8 2.3 邊界條件設定 9 第三章 數值方法理論推導 11 3.1 移動最小二乘法理論推導 11 3.2 基底函數、鄰近點數與加權函數 13 3.3 狀態變數應用於二維彈性力學問題 14 3.4 Hermite型置點法應用於二維彈性力學問題 17 第四章 數值方法模擬結果 20 4.1 Timoshenko邊界假設下之懸臂梁受拋物線剪力作用 20 4.2 懸臂梁受拋物線剪力作用 22 4.3 懸臂梁受均勻拉力作用 23 4.4 無限板中央水平裂縫上下受均勻拉力作用 25 4.5無限板中央開圓孔左右受均勻拉力作用 27 4.5.1 均勻佈點 29 4.5.2 部分均勻佈點 30 4.5.3 非均勻佈點 31 第五章 結論 33 參考文獻 35

    [1] Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of the royal astronomical society, 181(3), 375-389.
    [2] Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. The astronomical journal, 82, 1013-1024.
    [3] Desbrun, M., & Gascuel, M.-P. (1996). Smoothed particles: A new paradigm for animating highly deformable bodies: Springer.
    [4] Lancaster, P., & Salkauskas, K. (1981). Surfaces generated by moving least squares methods. Mathematics of computation, 37(155), 141-158.
    [5] Nayroles, B., Touzot, G., & Villon, P. (1992). Generalizing the finite element method: diffuse approximation and diffuse elements. Computational mechanics, 10(5), 307-318.
    [6] Belytschko, T., Lu, Y. Y., & Gu, L. (1994). Element‐free Galerkin methods. International journal for numerical methods in engineering, 37(2), 229-256.
    [7] Belytschko, T., Gu, L., & Lu, Y. (1994). Fracture and crack growth by element free Galerkin methods. Modelling and Simulation in Materials Science and Engineering, 2(3A), 519.
    [8] Belytschko, T., Lu, Y., & Gu, L. (1995). Crack propagation by element-free Galerkin methods. Engineering Fracture Mechanics, 51(2), 295-315.
    [9] Krongauz, Y., & Belytschko, T. (1997). A Petrov-Galerkin diffuse element method (PG DEM) and its comparison to EFG. Computational mechanics, 19(4), 327-333.

    [10] Liu, W. K., Jun, S., & Zhang, Y. F. (1995). Reproducing kernel particle methods. International journal for numerical methods in fluids, 20(8‐9), 1081-1106.
    [11] Liu, W. K., Jun, S., Li, S., Adee, J., & Belytschko, T. (1995). Reproducing kernel particle methods for structural dynamics. International journal for numerical methods in engineering, 38(10), 1655-1679.
    [12] Chen, J.-S., Pan, C., Wu, C.-T., & Liu, W. K. (1996). Reproducing kernel particle methods for large deformation analysis of non-linear structures. Computer methods in applied mechanics and engineering, 139(1), 195-227.
    [13] Oñate, E., Idelsohn, S., Zienkiewicz, O., & Taylor, R. (1996). A finite point method in computational mechanics. Applications to convective transport and fluid flow. International journal for numerical methods in engineering, 39(22), 3839-3866.
    [14] Oñate, E., Idelsohn, S., Zienkiewicz, O., Taylor, R., & Sacco, C. (1996). A stabilized finite point method for analysis of fluid mechanics problems. Computer methods in applied mechanics and engineering, 139(1), 315-346.
    [15] Oñate, E., Perazzo, F., & Miquel, J. (2001). A finite point method for elasticity problems. Computers & Structures, 79(22), 2151-2163.
    [16] Atluri, S., & Zhu, T. (1998). A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational mechanics, 22(2), 117-127.
    [17] Long, S., & Atluri, S. (2002). A meshless local Petrov-Galerkin method for solving the bending problem of a thin plate. Computer Modeling in Engineering and Sciences, 3(1), 53-64.
    [18] 翁啟照. (2008). 無元素葛勒金法在二維彈力之應用. 成功大學土木工程學系學位論文, 1-56.

    [19] Wang, Y.-M., Chen, S.-M., & Wu, C.-P. (2010). A meshless collocation method based on the differential reproducing kernel interpolation. Computational mechanics, 45(6), 585-606.
    [20] Yang, S.-W., Wang, Y.-M., Wu, C.-P., & Hu, H.-T. (2010). A meshless collocation method based on the differential reproducing kernel approximation. Computer Modeling in Engineering and Sciences (CMES), 60(1), 1.
    [21] 楊佳蓉. (2011). 齊次基底移動最小二乘法在二維彈性力學上之應用. 成功大學土木工程學系學位論文, 1-96.
    [22] 吳建勳. (2013). 受束制之移動最小二乘法在二維彈性力學問題上之應用.
    [23] Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., & Krysl, P. (1996). Meshless methods: an overview and recent developments. Computer methods in applied mechanics and engineering, 139(1), 3-47.
    [24]Timoshenko, S. P., Googier, J. N. (1970). Theory of Elasticity, 3rd Edn, McGraw-Hill, New York.
    [25] Green, A. E., Zerna, W. (1968). Theoretical Elasticity, 2nd Edn, Oxford University Press, Ely House, London.
    [26] Broek, D. (1986). Elementary engineering fracture mechanics: Springer.
    [27]Sadd, M. H. (2014). Elasticity: theory, applications, and numerics: Academic Press.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE