| 研究生: |
胡志賢 Hu, Chih-hsien |
|---|---|
| 論文名稱: |
使用界面活性單體(3-二甲胺丙基)甲基丙烯醯胺與不同結構交聯劑分子製備高選擇性白蛋白模版 Using (3-dimethylaminopropyl) methacrylamide surfactant functional monomer and different molecular structure cross-linkers to prepare high selectivity albumin imprinted polymer |
| 指導教授: |
周澤川
Chou, Tse-chuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 白蛋白 、分子模版 |
| 外文關鍵詞: | molecularly imprinted polymer, Albumin |
| 相關次數: | 點閱:95 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
分子模版聚合物 (Molecularly imprinted polymer,MIP) 是一種具有選擇辨識能力的合成巨分子結構,其能力之來源,乃是因進行分子拓印後,所形成的許多具有特定立體結構與化學作用力的孔洞。MIP 可應用於許多領域:如製作感測器、層析分離與作為觸媒使用等。
在本研究中所使用的目標分子是牛血清白蛋白 (Bovine serum albumin,BSA),它與人類血清白蛋白 (Human serum albumin,HSA) 在生理或物理特性上都有極高的相似度。HSA 是血液中蛋白質物種含量最高者,主要是作為體內養分或代謝廢物的攜帶者。當人類體液 (血液或尿液) 中 HSA 含量發生變化時,即表示人體可能患有某些疾病。因此對 HSA 有選擇辨識能力的 MIP,有應用於臨床診斷上的可能性。
在本研究中所合成的 MIP 有兩種,第一種是以官能單體 (3-二甲胺丙基) 甲基丙烯醯胺 (3-Dimethylaminopropyl methacrylamide,DMAPMA) 搭配具有線形分子結構交聯劑:四甘醇二甲基丙烯酸酯 (Tetraethyleneglycol dimethacrylate,TEGDMA) 所製得之 MIP 。在此一合成 MIP 實驗中發現:當以水分量為 6.04% 的 DMAPMA-BSA-水 混合液進行實驗時,所製得 MIP 可有對 BSA 高達 99% 的選擇性,此值換算成吸附量為 6.370 mg-BSA/ g-MIP。由實驗結果可整理出此系統最佳合成條件如下:官能單體-交聯劑莫耳比:1:8,聚合溫度與時間:38℃ 與 60 小時。
第二種 MIP ,則是將其合成交聯劑由具線形分子結構的TEGDMA ,變更為非線形分子結構交聯劑:季戊四醇三丙烯酸酯 (Pentaerythritol tetraacrylate,PETTA)。此交聯劑,由於其分子結構為較不易轉動之硬鏈,因此所具有的構形變化自由度較 TEGDMA 低。故以此兩系統所得實驗結果進行比較後,可討論出交聯劑分子結構對所合成 MIP 影響性。經實驗後,可知其最佳合成條件為:官能單體-交聯劑莫耳比:1:11,聚合溫度與時間: 38℃ 與 48 小時。從實驗結果可知此系統所製得之 MIP 對 BSA 選擇性為 93.56%,並與前一系統數據相較後可認為:以線形分子結構交聯劑製作 BSA-MIP 應為較佳選擇。
以前述之 DMAPMA-TEGDMA MIP 合成系統進行其它方向的應用:如搭配石英微量天平 (Quartz crystal microbalance,QCM) 製作白蛋白感測器或使用微接觸 (Micro-contact imprintint) 技術製作 MIP 薄膜實驗等,亦都得到許多正面數據。除此之外,在以 SEM 與 AFM 進行 MIP 薄膜表面輪廓觀察時,亦成功觀察到 MIP 薄膜表面輪廓在吸附蛋白質前、後變化情形。
Molecularly imprinted polymers (MIPs) are synthetic macromolecular structures with selective recognition, determined mainly by the shapes of their cavities, and the chemical functionality imbedded in the matrix. MIPs show potential for application in many fields, e.g. sensor design, chromatograpic separation and catalysis.
Bovine serum albumin (BSA) was selected as an imprinting target for this study as it is a direct mammalian analogue of its human counterpart. Albumin is a major transport protein in blood and as such the development of synthetic matrices able to recognize this protein have potential application in diagnostics.
Two polymer formulations were used to form imprints of BSA. Firstly, a BSA-MIP was prepared with a linear cross-linker, i.e. 3-Dimethylaminopropyl methacrylamide-Tetraethyleneglycol dimethacrylate (DMAPMA-TEGDMA), in the presence of 6.04% water. This polymer on re-binding showed a high selectivity (99%) towards its template molecule, corresponding to 6.370 mg-BSA/ g-MIP. From the experimental data, the optimum mole ratio of DMAPMA to TEGDMA, was 1:8, the optimal polymerization time was 60 hr with the synthesis being carried out at 38℃.
In the second approach, TEGDMA was replaced with Pentaerythritol tetraacrylate (PETTA), which is a non-linear cross-linking agent with a more rigid structure than TEGDMA therefore allowing less conformational freedom during MIP formation. From the experimental data, the optimum synthesis conditions of this system were determined as 48 hr polymerization at 38℃ and the mole ratio of DMAPMA to PETTA was 1:11. This MIP, formulated with DMAPMA and PETTA, showed a 93.56% selectivity to BSA with a similar adsorption ability as the DMAPMA-TEGDMA co-polymer. Based on this result, we may deduce that the linear cross-linker is better optimised for preparation of the BSA imprinted polymer.
Application of the DMAPMA-TEGDMA MIP in different settings, such as in: sensors or thin film fabrication, gave good data. The MIP-QCM sensor showed excellent selectivity towards BSA. Synthesis of MIPs using micro-contact imprinting also showed good results. Also included are SEM and AFM images of MIP thin films made by micro-contact imprinting showing their surface morphology.
[1] A. Bossi, M. D`Acunto and P. Righettivol, “Controlled enzyme-immobilisation on capillaries for microreactors for peptide mapping", Anal Bio Chem 378 (2004) 1722.
[2] P. Tarkkinen and T. Lovgren, “Ultrarapid, ultrasensitive one-Step kinetic immunoassay for c-reactive protein (CRP) in whole blood samples: measurement of the entire CRP concentration range with a single sample dilution”, Clin Chem 48 (2002) 269.
[3] A. Douglas and J. Linderman, Receptors model for binding, trafficking and signaling, New York Oxford:Oxford university press, 1993, chapter 1-2.
[4] http://arbl.cvmbs.colostate.edu/hbooks/molecules/aminoacids.html
[5] 吳盈清, Structure-activity relationships of opioid ligands: a molecular dynamics study, 博士論文, 國立成功大學, 2008.
[6] 駒野徹, 酒井裕, 分子生物學入門, 第一版, 科技圖書股份有限公司, 2002.
[7] I. M. Roitt, Essential immunology, 7th edition, Blackwell Scientific Publications Limited, Oxford, 1991.
[8] 王依蕾, 蔡紫君, 蔡昀岸, 蘇宇平, 許秉權, 實用免疫學, 第一版, 藝軒圖書出版社, 1994.
[9] 王南歷, 管定國, 免疫學 (原理與應用), 第一版, 藝文圖書公司, 1987.
[10] A. De´r, L. Kelemen, L. Fa´bia´n, S. G. Taneva, E. Fodor, T. Pa´li, A. Cupane, M. G. Cacace and J. J. Ramsden, “Interfacial water structure controls protein conformation”, J. Phys. Chem. B 111 (2007) 5344.
[11] L. Degr`eve, G. H. Brancaleoni, C. A. Fuzo, M. R. Lourenzoni, F. M. Mazz´e, A. M. Namba and D. S. Vieira, “On the role of water in the protein activity”, Braz. J. Phys. 34 (2004) 102.
[12] S. Kiihne and R. G. Bryant, “Protein-bound water molecule counting by resolution of 1H spin-lattice relaxation mechanism”, Biophys. J. 78 (2000) 2163.
[13] L. Pauling, “A theory of the structure and process of formation of antibodies “, J. Am. Chem. Soc. 62 (1940) 2643.
[14] G. Wulff and A. Sarhan, “Macromolecular colloquium”, Angew. Chem., Int. Ed. Engl. 11 (1972) 341.
[15] L. Andersson, B. Sellergren and K. Mosbach, “Imprinting of amino acid derivatives in macroporous polymers”, Tetrhedron Lett. 25 (1984) 5211.
[16] Editor: X. H. Huang & contributors, T. C. Chou et al., Nanotechnology Research—New Nanostructures, Nanotubes and Nanofibers, Nova Science Publishers, Inc., Hauppauge, NY, 2008.
[17] S. Piletsky and A. Turner, Molecular Imprinting of Polymers, Landes Bioscience, Austin, TX, 2006.
[18] M. D. Yan and O. Ramstrvm, Molecularly Imprinted Materials: Science and Technology, Marcel Dekker, NY, 2005.
[19] M. Komiyama, T. Takeuchi and T. Mukawa , Molecular Imprinting: From Fundamentals to Applications, Wiley-VCH, Weinheim,2002.
[20] B. Boutevin, C. Boyer, I. Csetneki, G. David, J. S. Ferguson, G. Filipcsei, B. Gong, S. Li, W. Li, A. R. Sanford, A. Szilagyi and M. Zrinyi, Oligomers - Polymer Composites -Molecular Imprinting, Springer Berlin / Heidelberg , NY, 2007.
[21] H. Ito, J. D. Marty and M. Mauzak, Microlithography/Molecular Imprinting, Springer Berlin / Heidelberg, NY, 2005.
[22] R. A. Bartsch and M. Maeda, Molecular & Ionic Recognition with Imprinted Polymers, Washington, D.C., ACS, 1998.
[23] B. Sellergren, Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and Their Application in Analytical Chemistry, Elsevier, Amsterdam, NY., 2001.
[24] Second International Workshop on Molecularly Imprinted Polymers, “PRE-CONFERENCE COURSE Fundamentals of Molecular Imprinting ”, La Grande Motte, France September 16-19th, 2002.
[25] W. P. Fish, J. Ferreira, R. D. Sheardy, N. H. Snow and T. P. O’Brien, “Rational design of an imprinted polymer: maximizing selectivity by optimizing the monomer-template ratio for a cinchonidine MIP, prior to polymerization, using microcalorimetry”, J Liq Chromatogr Relat Technol 28 (2005) 1.
[26] A. I. Cooper, W. P. Hems and A. B. Holmes, “Synthesis of highly cross-linked polymers in supercritical carbon dioxide by heterogeneous polymerization”, Macromolecules 32 (1999) 2156.
[27] C. Yu and K. Mosbach, “Influence of mobile phase composition and cross-linking density on the enantiomeric recognition properties of molecularly imprinted polymers “, J. Chromatogr. A, 888 (2000) 63.
[28] Q. Z. Zhu, K. Haupt, D. Knopp and R. Niessner, “Molecularly imprinted polymer for metsulfuron-methyl and its binding characteristics for sulfonylurea herbicides”, Anal. Chim. Acta 468 (2002) 217.
[29] Z. Jie and H. Xiwen, “Study of the nature of recognition in molecularly imprinted polymer selective for 2-aminopyridine”, Anal. Chim. Acta 381 (1999) 85.
[30] B. Sellergren, B. Ekberg and K. Mosbach, “Molecular imprinting of amino acid derivatives in macroporous polymers : demonstration of substrate- and enantio-selectivity by chromatographic resolution of racemic mixtures of amino acid derivatives”, J. Chromatogr. 347 (1985) 1.
[31] L. I. Andersson, R. Muller, G. Vlatakis and K. Mosbach, Proceeding of National Academic Science USA 92 (1995) 4788.
[32] S. A. Piletsky, T. L. Panasyuk, E. V. Pileskaya, I. A. Nicholls and M. Ulbricht, “Receptor and transport properties of imprinted polymer membrane—a review”, J. Membr. Sci. 157 (1999) 263.
[33] B. Sellergren, “Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials”, Trends Analyt Chem 16 (1997) 310.
[34] L. Fischer, R. Muller, B. Ekberg and K. Mosbach, “Direct enantioseparation of beta.-adrenergic blockers using a chiral stationary phase prepared by molecular imprinting”, J. Am. Chem. Soc. 113 (1991) 9358.
[35] O. Ramstrom, L. Ye and M. Krook, “Screening of a combinatorial steroid library using molecularly imprinted polymers“, Anal. Commun. 35 (1998) 9.
[36] M. Rezeli, F. Kilár and S. Hjertén, “Monolithic beds of artificial gel antibodies”, J Chromatogr A 1109 (2006) 100.
[37] M. Ulbricht, “Membrane separations using molecularly imprinted polymers”, J Chromatogr B 804 (2004) 113.
[38] http://www.smi.tu-berlin.De/syory/MIT.htm, 2002
[39] M. Maeda and R. Barsch, Molecular and ionic Recognition with Imprinted polymers, American Chemical Society, Washington, DC., 1988.
[40] http://www.itri.org.tw/chi/services/ieknews/h-B01-500324
[41] M. Kato and T. Toyooka, “Enantiomeric separation by CEC using chiral stationary phase”, Chromatography 22 (2001) 159.
[42] G. Sakai, T. Sakai, T. Uda, N. Miura and N. Yamazoe, “Evaluation of binding of human serum albumin (HSA) to monoclonal and polyclonal antibody by means of piezoelectric immunosensing technique “, Sens Actuators B Chem 42 (1997) 89.
[43] R. M. Carter, M. B. Jacobs, G. Lubrano and G. G. Guilbault, “Piezoelectric detection of ricin and affinity-purified goat anti-ricin antibody”, Anal Lett 28 (1995) 1379.
[44] R. M. Carter, J. J. Mekalanos, M. B. Jacobs, G. J. Lubrano and G. G. Guilbault, “Quartz crystal microbalance detection of Vibrio cholerae O139 serotype “, J Immunol Methods 187 (1996) 121.
[45] J. L. N. Harteveld, M. S. Nieuwenhuizen and E. R. J. Wils, “Detection of staphylococcal enterotoxin b employing a piezoelectric crystal immunosensor”, Biosens Bioelectron 12 (1997) 661.
[46] M. Muratsuqu, S. Kurosawa, H. O. Ghourchian and N. Kamo, “Development of latex piezoelectric immunoassay and piezoelectric biosensor for laboratory tests”, Bunseki Kagaku 46 (1997) 917.
[47] K. Yun, E. Kobatake, T. Haruyuma, M. Laukkaned, K. Keinanen and M. Aizawa, “Use of a quartz crystal microbalance to monitor immunoliposome−antigen interaction”, Anal Chem 70 (1998) 260.
[48] H. Aizawa, S. Kurosawa, K. Ogawa, M. Yoshimoto, J. Miyake and H. Tanaka, “Conventional diagnosis of c-reactive protein in serum using latex piezoelectric immunoassay”, Sens Actuators B 76 (2001) 173.
[49] S. A. Piletsky, S. Alcock and A. P. F. Turner, “Molecular imprinting: at the edge of the third millennium”, Trends Biotechnol 19 (2001) 9.
[50] D. Kriz and K. Mosbach, “Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer”, Anal. Chim. Acta 300 (1995) 71.
[51] J. Du, L. Shen and J. Lu, “Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material”, Anal Chim Acta 489 (2003) 183.
[52] O. Hayden, R. Bindeus, C. Haderspo¨ck, K. Mann, B. Wirl and F. L. Dickert, “Mass-sensitive detection of cells, viruses and enzymes with artificial receptors”, Sens Actuators B 91 (2003) 316.
[53] F. L. Dickert, O. Hayden and K. P. Halikias, “Synthetic receptors as sensor coatings for molecules and living cells”, Analyst 126 (2001) 766.
[54] L. Ye and K. Mosbach, “Polymers recognizing biomolecules based on a combination of molecular imprinting and proximity scintillation: a new sensor concept”, J Am Chem Soc 123 (2001) 2901.
[55] C. Liang, H. Peng, X. Bao, L. Nie and S. Yao, “Study of a molecular imprinting polymer coated BAW bio-mimic sensor and its application to the determination of caffeine in human serum and urine”, Analyst 124 (1999) 1781.
[56] O. Ramstrom, K. Skudar, J. Haines, P. Patel and O. Bruggemann, “Food analyses using molecularly imprinted polymers”, J Agric Food Chem 49 (2001) 2105.
[57] M. J. Whitcombe, C. Alexander and E. N. Vulfson, “Smart polymers for the food industry”, Trends Food Sci. Technol. 8 (1997) 140.
[58] K. J. Shea, E. A. Thompson, S. D. Pandey and P. Beauchamp, “Tautomerism of orotic acid dianion. effect of calcium and magnesium cations on the tautomeric constant and on tautomerization dynamics”, J. Am. Chem. Soc. 102 (1980) 3149.
[59] J. Damen and D. C. Neckers, “Stereoselective syntheses via a photochemical template effect”, J. Am. Chem. Soc. 102 (1980) 3265.
[60] A. Sarhan and M. Abou-EI-Zahab, “Racemic resolution of mendelic acid on polymers with chiral cavities. II, enzyme-analogue stereospecific conversion of configuration”, Makromol. Chem. Rapod Commun. 8 (1987) 555.
[61] A. Leonhardt and K. Mosbach, “Enzyme-mimicking polymers exhibiting specific substrate binding and catalytic functions”, React. Polym. 6 (1987) 285.
[62] J. Y. Ju, C. S. Shin, M. J. Whitcombe and E. N. Vulfson, “Binding properties of an aminostyrene-based polymer imprinted with glutamylated monascus pigments”, technol. Techn. 665 (1999) 13.
[63] J. Y. Ju, C. S. Shin, M. J. Whitcombe and E. N. Vulfson, “Imprinted polymers as tools for the recovery of secondary metabolites produced by fermentation”, Biotechnol Bioeng 64 (1999) 232.
[64] J. Mathew-Krotz and K. J. Shea, “Imprinted polymer membranes for the selective transport of targeted neutral molecules”, J. Am. Chem. Soc. 118 (1996) 8154.
[65] H. Y. Wang, T. Kobayashi and N. Fujii, “Molecular imprinting of theophylline in acrylonitrile-acrylic acid copolymer membrane”, Chem. Lett. 24 (1995) 927.
[66] T. Kobayashi, H. Y. Wang and N. Fujii, “Molecular imprint membranes prepared by the phase inversion precipitation technique”, Langmuir 12 (1996) 4850.
[67] S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano and I. Karube, “Atrazine sensing by molecularly imprinted membranes”, Biosens Bioelectron 10 (1995) 959.
[68] M. Siemann, L. I. Andersson and K. Mosbach, “Selective recognition of the herbicide atrazine by noncovalent molecularly imprinted polymers”, Agric Food Chem 44 (1996) 141.
[69] K. Sreenivasan, “Imparting cholesterol recognition sites in radiation polymerised poly (2-hydroxyethyl methacrylate) by molecular imprinting”, Polym Int 42 (1997) 169.
[70] K. Sreenivasan, “Effect of the type of monomers of molecularly imprinted polymers on the interaction with steroids”, J Appl Polym Sci 68 (1998) 1863.
[71] P. S. Reddy, T. Kobayashi and N. Fujii, “Molecular imprinting in hydrogen bonding networks of polyamide nylon for recongnition of amino acids”, Chem. Lett. 28 (1999) 293.
[72] K. Haupt, “Peer reviewed: molecularly imprinted polymers: the next generation”, Anal Chem 75 (2003) 376.
[73] C. Y. Lin, D. F. Tai and T. Z. Wu, “Discrimination of peptides by using a molecularly imprinted piezoelectric biosensor”, Chemistry 9 (2003) 5107.
[74] J. T. Huang, J. Zhang, J. Q. Zhang and S. H. Zheng, “Template imprinting amphoteric polymer for the recognition of proteins”, J Appl Polym Sci 95 (2005) 358.
[75] S. H. Ou, M. C. Wu, T. C. Chou and C. C. Liu, “Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme”, Anal Chim Acta 504 (2004) 163.
[76] J. Rick and T. C. Chou, “Enthalpy changes associated with protein binding to thin films”, Biosens Bioelectron 20 (2005) 1878.
[77] F. L. Dickert and O. Hayden, “Bioimprinting of polymers and sol−gel phases. selective detection of yeasts with imprinted polymers”, Anal Chem 74 (2002) 1302.
[78] R. Arshady, “Functional monomers”, Macromol Sci Rev Macromol Chem Phys 32 (1992) 101.
[79] P. A. G. Cormack and A. Z. Elorza, “Molecularly imprinted polymer: synthesis and characterization”, J Chromatogr B 804 (2004) 173.
[80] J. Whitcombe, M. E. Rodriguez, P. Villar and E. N. Vulfson, “A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors of cholesterol”, J Am Chem Soc 147 (1995) 7105.
[81] M. Kempe, “Antibody-mimicking polymers as chiral stationary phases in HPLC“, Anal Chem 68 (1996) 1948.
[82] G. Wulff, A. Steinert and O. Holler, “Molecularly imprinted polymers: synthesis and characterization”, “Influence of functional and cross-linking monomers and the amount of template on the performance of molecularly imprinted polymers in binding assays”, Carbohydr Res 307 (1998) 19.
[83] E. Yilmaz, K. Mosbach and K. Haupt, “Influence of functional and cross-linking monomers and the amount of template on the 121 performance of molecularly imprinted polymers in binding assays”, Anal. Commun. 36 (1999) 167.
[84] E. S. Huyser, Free radical chain reactions, Wiley, New York, 1970.
[85] T. Koenig, Free radicals, Vol. I, J. K. Kochi, Ed., Wiley, New York, 1973.
[86] G. C. Eastmond, Comprehensive chemical kinetics, American Elisevier, New York, 1976.
[87] G. ODIAN, Principles of polymerization, 4th Edition, John Wiley & Sons, INC., 2004.
[88] G. Wulff, “Polymeric reagents and catalysts”, ACS Symp. Ser 308 (1986) 186.
[89] J. M. Tedder, Reactivity, mechanism and structure in polymer chemistry, Wiley-Interscience, New York, 1974.
[90] G. Bonta, B. M. Gallo, S. Russo and C. Uliana, “Radiochemical study of the radical copolymerization of styrene and methyl methacrylate”, Polymer 17 (1976) 217.
[91] G. Ayrey, M. J. Humphrey and R. C. Poller, “Radiochemical studies of free-radical vinyl polymerizations: 7. Polymerization of methyl acrylate”, Polymer 18 (1977) 840.
[92] S. A. Piletsky, E. V. Piletska, K. Karim, K. W. Freebairn, C. H. Legge and A. P. F. Turner, “Polymer cookery: influence of polymerization conditions on the Performance of molecularly imprinted polymers”, Macromolecules 35 (2002) 7499.
[93] Z. Xu, L. Liu and Q. Deng, “Study on the mechanism of binding specificity of metoclopramide-imprinted polymers”, J Pharm Biomed Anal 41 (2006) 701.
[94] I. Idziak, A. Benrebouh and F. Deschamps, “Simple NMR experiments as a means to predict the performance of an anti-17α-ethynylestradiol molecularly imprinted polymer”, Anal Chim Acta 435 (2001) 137.
[95] K. Takeda, A. Wada, K. Yamamoto, Y. Moriyama and K. Aoki, “Conformational change of bovine serum albumin by heat treatment”, J Protein Chem 8 (1989) 653.
[96] H. Y. Lin, J. Rick and T. C. Chou, “Optimizing the formulation of a myoglobin molecularly imprinted thin-film polymer—formed using a micro-contact imprinting method”, Biosens Bioelectron 22 (2007) 3293.
[97] C. Y. Hsu, H. Y. Lin, J. L. Thomas, B. T. Wu and T. C. Chou, “Incorporation of styrene enhances recognition of ribonuclease A by molecularly imprinted polymers”, Biosens Bioelectron 22 (2006) 355.
[98] L. Paulino da Silva, “Atomic force microscopy and proteins”, Protein Pept Lett 9 (2002) 117.
[99] L. Paulino da Silva, “Atomic force microscopy investigation of ribonuclease A”, Protein Pept Lett 8 (2001) 343.
[100] K. Shibata and K. Murai, “The change of molecular weight of egg albumin in aqueous solution”, Bull Chem Soc Jpn 25 (1952) 261.
[101] R. J. Ansell, D. Kriz and K. Mosbach, “Molecularly imprinted polymers for bioanalysis: chromatography, binding assays and biomimetic sensors”, Curr Opin Biotech 7 (1996) 89.
[102] P. Parmpi and P. Kofinas, “Biomimetic glucose recognition using molecularly imprinted polymer hydrogels”, Biomaterials 25 (2004) 1969.
[103] Y. Nishiwaki, Y. Takeoka, M. Rikukawa and K. Sanui, “Fabrication of polymeric thin films by a self-assembly method”, Synth Met 137 (2003) 931.
[104] J. Shi, F. Hua, T. Cui and Y. M. Lvov, “Temperature effect on layer-by-layer self-assembly of linear polyions and silica multilayers”, Chem. Lett. 32 (2003) 316.
[105] J. W. Park, S. Kurosawa, H. Aizawa, S. I. Wakida, S. Yamada and K. Ishihara, “Stabilizing effect of artificial stabilizers for binding activity of QCM immunosensors”, IEEE Trans Ultrason Ferroelectr Freq Control 50 (2003) 1234.
[106] B. S. Attili and A. A. Suleiman, “A piezoelectric Immunosensor for the Detection of Cocaine”, Microchem J 54 (1996) 174.
[107] S. Kurosawa, H. Aizawa, M. Tozuka, M. Nakamura and J. W. Park, “Immunosensors using a quartz crystal microbalance”, Meas Sci Technol 14 (2003) 1882.
[108] C. J. Percival, S. Stanley, A. Braithwaite, M. I. Newton and G. McHale, “Molecular imprinted polymer coated QCM for the detection of nandrolone”, Analyst 127 (2002) 1024.
[109] J. Hu, L. Liu, B. Danielsson, X. Zhou and L. Wang, “Piezoelectric immunosensor for detection of complement C”, Anal. Chim. Acta 423 (2000) 215.
[110] H. Aizawa, S. Kurosawa, M. Tanaka, M. Yoshimoto, J. Miyake and H. Tanaka, “Rapid diagnosis of Treponema pallidum in serum using latex piezoelectric immunoassay”, Anal. Chim. Acta 437 (2001) 167.
[111] G. Sakai, T. Saiki, T. Uda, N. Miura and N. Yamazoe, “Selective and repeatable detection of human serum albumin by using piezoelectric immunosensor”, Sens Actuators B Chem 24-25 (1995) 134.
[112]http://74.125.153.132/search?q=cache:l4flywBv4vgJ:www.cichb.gov.tw/sta_information/sta_informations.asp+%E5%8D%81%E5%A4%A7%E6%AD%BB%E5%9B%A0&cd=1&hl=zh-TW&ct=clnk&gl=tw,嘉義市政府衛生局
[113] D. W. Miles, C. E. Mogensen and J. S. Gundersen, “Radioimmunoassay for urinary albumin using a single antibody”, Scand J. Clin. Lab. Invest. 26 (1970) 5.
[114] C. E. Mogensen, “Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes”, N. Eng. J. Med. 310 (1984) 356.
[115] J. Mathew-Krotz and K. J. Shea, “Imprinted polymer membranes for the selective transport of targeted neutral molecules”, J. Am. Chem. Soc. 118 (1996) 8154.
[116] F. W. Putnam, The plasma proteins - structure,function and genetic control, 2nd edition, Academic Press, Orlando, Florida, 1984.
[117] J. D. Wilson, D. W. Foster, Williams textbook of endocrinology, 8th edition, Philadelphia, W. B. Saunders Co., 1992.
校內:2014-08-28公開