簡易檢索 / 詳目顯示

研究生: 游秀靜
Yu, Hsiu-Ching
論文名稱: 開發新穎血管新生因子緩釋凝膠劑型用於慢性傷口癒合之研究
Study on Sustained-Release Gel Formulation of Novel Angiogenesis Factor for Chronic Wound Healing
指導教授: 蔡瑞真
Tsai, Jui-Chen
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 104
中文關鍵詞: 慢性傷口血管新生因子Carbopol 凝膠奈米結構脂質載體
外文關鍵詞: chronic wound healing, angiogenesis factor, carbopol gel, nanostructured lipid carrier
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傷口癒合的過程是由一連串複雜的生理機制所構成,可大致分為止血期、發炎期、增生期及重塑期等四個階段,而未在三個月內癒合的傷口即為慢性傷口。在傷口的癒合過程中,需要生長因子的協助,近期研究指出,新穎血管新生因子,rhTM (recombinant human thrombomodulin, rhTM),具有EGF-like domain,可以刺激keratinocyte、fibroblast等細胞的增生、移動及誘導血管新生作用,因此具有促進慢性傷口癒合的臨床應用潛力。
    蛋白質藥物的半衰期短、安定性低,因此不利於臨床使用,若是要將rhTM應用於慢性傷口的治療,需要緩慢且穩定釋出的劑型以配合傷口護理頻次。奈米結構脂質載體 (nanostructured lipid carrier, NLC) 具有保護蛋白質藥物,減緩代謝、降低劑量及持續釋放的作用。先前的研究已製成包載 rhTM 的奈米結構脂質載體 (rhTM NLC) 劑型,並證實具有促進傷口癒合的療效。本研究擬進一步添加增稠劑至rhTM NLC中,製備成rhTM NLC-gel,使藥品易於塗抹於傷口處並延長停留時間以促進藥物局部作用,增加臨床使用的便利性。
    本研究首先篩選適合的增稠劑,製成rhTM NLC的凝膠劑型,並評估其粒徑大小、分布情形、介面電位、pH值、藥物釋出及安定性等。接著使用 STZ 誘導糖尿病小鼠模式,觀察給予rhTM NLC-gel後傷口癒合的情形,並透過組織切片染色評估傷口癒合的階段與完整性,同時利用人類角質細胞移行實驗評估不同劑型的細胞活性。給予不同劑型的藥物後,藉著不同採血時間rhTM的血中濃度變化,來評估不同劑型的全身暴露情形。
    研究結果顯示,以0.085% Carbopol製備而成的rhTM NLC-gel仍保持原有之粒子形態、具有物理安定性以、緩釋特性,和6週內的釋出安定性。rhTM NLC及rhTM NLC-gel顯著促進 HaCaT 細胞移行和糖尿病小鼠傷口癒合,加速肉芽組織增生、表皮新生、膠原蛋白沉積和血管新生。rhTM血中濃度低而持久,可能減少 rhTM 的全身暴露而改善臨床使用的安全性。
    綜合言之,包載1.2g rhTM 的 NLC與 NLC-gel 皆能顯著促進糖尿病小鼠傷口癒合,且具有較平穩的血中濃度。rhTM NLC-gel製備簡易、塗抹方便、安全性佳,具有開發為臨床應用劑型之潛力,幫助慢性傷口患者之照護。

    Previous studies have demonstrated that recombinant human TM (rhTM) loaded in nanostructured lipid carrier (NLC) accelerated chronic wound healing in streptozotocin-induced diabetic mice. To further improve the clinical applications of rhTM-NLC, the study was aimed to incorporate NLC into gel form to prolong drug retention on the wound and enhance localized action for wound healing. By incorportating 0.085% Carbopol into rhTM NLC, the NLC-gel presented similar particle characteristics, and demonstrated physical stability and sustained release property. The release stability was maintained within 6 weeks. Both rhTM NLC (1.2g) and rhTM NLC-gel (1.2g) improved wound healing of diabetic mice and cell migration of HaCaT significantly. In comparison with rhTM solution, plasma concentrations of rhTM post applications of NLC and NLC-gel formulations were lower and more sustained in 24 hours. In conclusion, rhTM NLC-gel formulation is easy to prepare, convenient to apply to the wound with reduced systemic exposure, which may warrant a potential delivery system for the care of chronic wound patients.

    中文摘要 I 英文摘要 III 目錄 VI 表目錄 X 圖目錄 XII 縮寫表 XIV 第壹章 文獻回顧 1 第一節 皮膚基本結構與功能 1 第二節 慢性傷口與傷口癒合 4 一、傷口癒合過程 4 二、形成慢性傷口之因素 7 三、慢性傷口種類 9 四、慢性傷口的評估與照護 10 五、生長因子在傷口癒合過程中所扮演的角色 14 第三節 Thrombomodulin (TM) 凝血酶調節素 17 第四節 生長因子之藥物輸送系統 20 第五節 凝膠劑型 24 第貳章 研究目的 26 第參章 研究材料與儀器 27 第一節 實驗動物 27 第二節 藥品、試劑及耗材 27 第三節 實驗儀器 29 第四節 繪圖與統計軟體 30 第肆章 研究設計 31 第一節 材料篩選與預試驗 31 第二節 處方製備 33 一、不含 rhTM 凝膠 33 二、不含 rhTM 及含不同劑量 rhTM 之奈米結構脂質載體 33 三、含 rhTM 奈米結構脂質載體凝膠劑型 34 四、rhTM 水溶液劑型 34 第三節 含藥奈米結構脂質載體凝膠劑型之物理特性評估 36 一、黏度測試 36 二、粒徑大小、分布情形及介面電位測試 37 三、穿透式電子顯微鏡觀察粒子形態 37 第四節 藥物體外釋出評估 39 一、Diffusion cell 藥物體外釋出評估 39 二、Sandwich ELISA-三明治法酵素免疫分析 41 第五節 動物傷口癒合實驗 42 一、鍊佐黴素 (Streptozotocin, STZ) 誘導糖尿病鼠模式 42 二、動物傷口手術方式 43 三、傷口癒合評估 44 四、組織切片染色觀察 45 第六節 人類角質細胞移行實驗 49 第七節 rhTM 血中濃度評估 51 第八節 統計分析方式 52 第伍章 研究結果 53 第一節 緩釋凝膠劑型的物化特性 53 一、增稠劑的篩選 53 二、奈米結構脂質載體的粒徑、分布情況及介面電位 56 三、含 rhTM 奈米結構脂質載體凝膠之粒子形態 61 第二節 藥物體外釋出 62 第三節 動物傷口癒合試驗 67 一、傷口癒合評估 67 二、組織切片染色觀察 74 第四節 人類角質細胞移行實驗 79 第五節 rhTM血中濃度評估 84 第陸章 討論 86 第一節 含 rhTM 奈米結構脂質載體凝膠劑型之特性 86 第二節 小鼠傷口固定模型 89 第三節 不同劑型對於傷口癒合的影響 92 第四節 不同劑型對於人類角質細胞移行的影響 95 第五節 給予不同劑型後 rhTM 血中濃度之變化 96 第柒章 結論 98 參考文獻 99

    APMA. (2014). The real cost of diabetes. Retrieved from https://www.apma.org/files/APMA_TodaysPodiatrist_Infographic_8.5x11_NOCROPS-2.pdf Assessed on 2019/07/11.
    Bharat, P., Paresh, M., Sharma, R. K., Tekade, B. W., Thakre, V. M. & Patil, V. R. (2011). A review: novel advances in semisolid dosage forms and patented technology in semisolid dosage forms. International Journal of PharmTech Research, 3, 420-430.
    Bhattacharjee, S. (2016). DLS and zeta potential - What they are and what they are not? J Control Release, 235, 337-351. doi:10.1016/j.jconrel.2016.06.017
    Castano, O., Perez-Amodio, S., Navarro-Requena, C., Mateos-Timoneda, M. A. & Engel, E. (2018). Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms. Adv Drug Deliv Rev, 129, 95-117. doi:10.1016/j.addr.2018.03.012
    Chao, T. H., Li, Y. H., Tsai, W. C., Chen, J. H., Liu, P. Y. & Tsai, L. M. (2004). Elevation of the soluble thrombomodulin level is associated with inflammation after percutaneous coronary interventions. Clin. Cardiol, 27, 407-410.
    Chaudhary, C. & Garg, T. (2015). Scaffolds: A Novel Carrier and Potential Wound Healer. 32(4), 277-321. doi:10.1615/CritRevTherDrugCarrierSyst.2015011246
    Cheng, T. L., Lai, C. H., Chen, P. K., Cho, C. F., Hsu, Y. Y., Wang, K. C., Lin, W. L., Chang, B. I., Liu, S. K., Wu, Y. T., Hsu, C. K., Shi, G. Y. & Wu, H. L. (2015). Thrombomodulin promotes diabetic wound healing by regulating toll-like receptor 4 expression. J Invest Dermatol, 135(6), 1668-1675. doi:10.1038/jid.2015.32
    Cheng, T. L., Wu, Y. T., Lai, C. H., Kao, Y. C., Kuo, C. H., Liu, S. L., Hsu, Y. Y., Chen, P. K., Cho, C. F., Wang, K. C., Lin, W. L., Chang, B. I., Chen, C. M., Weiler, H., Shi, G. Y. & Wu, H. L. (2013). Thrombomodulin regulates keratinocyte differentiation and promotes wound healing. J Invest Dermatol, 133(6), 1638-1645. doi:10.1038/jid.2013.8
    Cheng, T. L., Wu, Y. T., Lin, H. Y., Hsu, F. C., Liu, S. K., Chang, B. I., Chen, W. S., Lai, C. H., Shi, G. Y. & Wu, H. L. (2011). Functions of rhomboid family protease RHBDL2 and thrombomodulin in wound healing. J Invest Dermatol, 131(12), 2486-2494. doi:10.1038/jid.2011.230
    Conway, E. M. (2012). Thrombomodulin and its role in inflammation. Semin Immunopathol, 34(1), 107-125. doi:10.1007/s00281-011-0282-8
    Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S. & Mozafari, M. R. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2). doi:10.3390/pharmaceutics10020057
    Dowsett, C., Gronemann, M. & Harding, K. (2015a). Taking wound assessment beyond the edge. Wounds International, 6(1), 19-23.
    Dowsett, C., Ptotz, K., Drouard, M. & Harding, K. (2015b). Triangle of wound assessment made easy. Wounds International. Retrieved from https://www.woundsinternational.com/resources/details/triangle-of-wound-assessment-made-easy Assessed on 2019/07/11.
    Duarah, S., Durai, R. D. & Narayanan, V. B. (2017). Nanoparticle-in-gel system for delivery of vitamin C for topical application. Drug Deliv Transl Res, 7(5), 750-760. doi:10.1007/s13346-017-0398-z
    Eaton, P., Quaresma, P., Soares, C., Neves, C., de Almeida, M. P., Pereira, E. & West, P. (2017). A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. Ultramicroscopy, 182, 179-190. doi:10.1016/j.ultramic.2017.07.001
    Falanga, V. (2000). Classifications for wound bed preparation and stimulation of chronic wounds. Wound Repair Regen, 8(5), 347-352.
    Fonder, M. A., Lazarus, G. S., Cowan, D. A., Aronson-Cook, B., Kohli, A. R. & Mamelak, A. J. (2008). Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol, 58(2), 185-206. doi:10.1016/j.jaad.2007.08.048
    Gainza, G., Bonafonte, D. C., Moreno, B., Aguirre, J. J., Gutierrez, F. B., Villullas, S., Pedraz, J. L., Igartua, M. & Hernandez, R. M. (2015a). The topical administration of rhEGF-loaded nanostructured lipid carriers (rhEGF-NLC) improves healing in a porcine full-thickness excisional wound model. J Control Release, 197, 41-47. doi:10.1016/j.jconrel.2014.10.033
    Gainza, G., Pastor, M., Aguirre, J. J., Villullas, S., Pedraz, J. L., Hernandez, R. M. & Igartua, M. (2014). A novel strategy for the treatment of chronic wounds based on the topical administration of rhEGF-loaded lipid nanoparticles: In vitro bioactivity and in vivo effectiveness in healing-impaired db/db mice. J Control Release, 185, 51-61. doi:10.1016/j.jconrel.2014.04.032
    Gainza, G., Villullas, S., Pedraz, J. L., Hernandez, R. M. & Igartua, M. (2015b). Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine, 11(6), 1551-1573. doi:10.1016/j.nano.2015.03.002
    Galiano, R. D., Michaels, J., Dobryansky, M., Levine, J. P. & Gurtner, G. C. (2004). Quantitative and reproducible murine model of excisional wound healing. Wound Repair and Regeneration, 12(4), 485-492.
    Gan, S. D. & Patel, K. R. (2013). Enzyme immunoassay and enzyme-linked immunosorbent assay. J Invest Dermatol, 133(9), e12. doi:10.1038/jid.2013.287
    Gawkrodger, D. J. & Ardern-Jones, M. R. (2017). Microanatomy of the skin. In Dermatology: An Illustrated Colour Text (6 ed., pp. 2-3): Elserier Ltd.
    Golde, W. T., Gollobin, P. & Rodriguez, L. L. (2005). A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab Animal, 34(9), 39-43.
    Hamada, H., Ishii, H., Sakyo, K., Horie, S., Nishiki, K. & Kazama, M. (1995). The epidermal growth factor-like domain of recombinant human thrombomodulin exhibit mitogenic activity for Swiss 3T3 cell. Blood, 86, 225-233.
    Han, G. & Ceilley, R. (2017). Chronic Wound Healing: A Review of Current Management and Treatments. Adv Ther, 34(3), 599-610. doi:10.1007/s12325-017-0478-y
    Hayati, F., Ghamsari, S. M., Dehghan, M. M. & Oryan, A. (2018). Effects of carbomer 940 hydrogel on burn wounds: an in vitro and in vivo study. J Dermatolog Treat, 29(6), 593-599. doi:10.1080/09546634.2018.1426823
    Hsu, Y. Y., Liu, K. L., Yeh, H. H., Lin, H. R., Wu, H. L. & Tsai, J. C. (2019). Sustained release of recombinant thrombomodulin from cross-linked gelatin/hyaluronic acid hydrogels potentiate wound healing in diabetic mice. Eur J Pharm Biopharm, 135, 61-71. doi:10.1016/j.ejpb.2018.12.007
    Huang, H. C., Shi, G. Y., Jiang, S. J., Shi, C. S., Wu, C. M., Yang, H. Y. & Wu, H. L. (2003). Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem, 278(47), 46750-46759. doi:10.1074/jbc.M305216200
    Ishii, H. & Majerus, P. W. (1985). Thrombomodulin is present in human plasma and urine. J. Clin. Invest., 76, 2178-2181.
    Jain, S., Patel, N., Shah, M. K., Khatri, P. & Vora, N. (2017). Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application. J Pharm Sci, 106(2), 423-445. doi:10.1016/j.xphs.2016.10.001
    Jones, R. E., Foster, D. S. & Longaker, M. T. (2018). Management of Chronic Wounds-2018. JAMA, 320(14), 1481-1482. doi:10.1001/jama.2018.12426
    Kolarsick, P. A. J., Kolarsick, M. A. & Goodwin, C. (2011). Anatomy and Physiology of the Skin. Journal of the Dermatology Nurses' Association, 3(4), 203-213. doi:10.1097/JDN.0b013e3182274a98
    Larouche, J., Sheoran, S., Maruyama, K. & Martino, M. M. (2018). Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Adv Wound Care (New Rochelle), 7(7), 209-231. doi:10.1089/wound.2017.0761
    Lievenberg, W., Engelbrecht, E., Wessels, A., Devarakonda, B., Yang, W. & Villieers, M. M. D. (2003). A comparative study of the release of active ingredients from semisolid cosmeseuticals measured with Franz, enhancer or flow-through cell diffusion apparatus. Journal of Food and Drug Analysis, 11(4), 90-99.
    Martin, P. & Nunan, R. (2015). Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol, 173(2), 370-378. doi:10.1111/bjd.13954
    Mavrogenis, A. F., Megaloikonomos, P. D., Antoniadou, T., Igoumenou, V. G., Panagopoulos, G. N., Dimopoulos, L., Moulakakis, K. G., Sfyroeras, G. S. & Lazaris, A. (2018). Current concepts for the evaluation and management of diabetic foot ulcers. EFORT Open Rev, 3(9), 513-525. doi:10.1302/2058-5241.3.180010
    Mayba, J. N. & Gooderham, M. J. (2018). A Guide to Topical Vehicle Formulations. J Cutan Med Surg, 22(2), 207-212. doi:10.1177/1203475417743234
    Park, J. W., Hwang, S. R. & Yoon, I. S. (2017). Advanced Growth Factor Delivery Systems in Wound Management and Skin Regeneration. Molecules, 22(8). doi:10.3390/molecules22081259
    Park, S. A., Teixeira, L. B., Raghunathan, V. K., Covert, J., Dubielzig, R. R., Isseroff, R. R., Schurr, M., Abbott, N. L., McAnulty, J. & Murphy, C. J. (2014). Full-thickness splinted skin wound healing models in db/db and heterozygous mice: implications for wound healing impairment. Wound Repair Regen, 22(3), 368-380. doi:10.1111/wrr.12172
    Paul Hartmann, A. G. (2016). Illustration of chronic wound compared to the acute wound. Retrieved from http://www.medicalgraphics.de/en/projects/list-of-projects/projects-2016/illustration-of-chronic-wound-compared-to-the-acute-wound.html Assessed on 2019/07/11.
    Sala, M., Diab, R., Elaissari, A. & Fessi, H. (2018). Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int J Pharm, 535(1-2), 1-17. doi:10.1016/j.ijpharm.2017.10.046
    Salamanca, C. H., Barrera-Ocampo, A., Lasso, J. C., Camacho, N. & Yarce, C. J. (2018). Franz Diffusion Cell Approach for Pre-Formulation Characterisation of Ketoprofen Semi-Solid Dosage Forms. Pharmaceutics, 10(3). doi:10.3390/pharmaceutics10030148
    Schultz, G. S., Barillo, D. J., Mozingo, D. W., Chin, G. A. & Members, T. W. B. A. B. (2004). Wound bed preparation and a brief history of TIME. International Wound Journal, 1(1), 19-32.
    Shafiei, M., Balhoff, M. & Hayman, N. W. (2018). Chemical and microstructural controls on viscoplasticity in Carbopol hydrogel. Polymer, 139, 44-51. doi:10.1016/j.polymer.2018.01.080
    Sharfuddin, A. A., Sandoval, R. M., Berg, D. T., McDougal, G. E., Campos, S. B., Phillips, C. L., Jones, B. E., Gupta, A., Grinnell, B. W. & Molitoris, B. A. (2009). Soluble thrombomodulin protects ischemic kidneys. J Am Soc Nephrol, 20(3), 524-534. doi:10.1681/ASN.2008060593
    Shi, C. S., Shi, G. Y., Chang, Y. S., Han, H. S., Kuo, C. H., Liu, C., Huang, H. C., Chang, Y. J., Chen, P. S. & Wu, H. L. (2005). Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation, 111(13), 1627-1636. doi:10.1161/01.CIR.0000160364.05405.B5
    Tripathi, P., Kumar, A., Jain, P. K. & Patel, J. R. (2018). Carbomer gel bearing methotrexate loaded lipid nanocontainers shows improved topical delivery intended for effective management of psoriasis. Int J Biol Macromol, 120(Pt A), 1322-1334. doi:10.1016/j.ijbiomac.2018.08.136
    Wang, J. & Windbergs, M. (2017). Functional electrospun fibers for the treatment of human skin wounds. Eur J Pharm Biopharm, 119, 283-299. doi:10.1016/j.ejpb.2017.07.001
    WHO. (2018). Diabetes. Retrieved from https://www.who.int/news-room/fact-sheets/detail/diabetes Assessed on 2019/07/11.
    William J. Reilly, J. (2013). Pharmaceutical Excipient. In Remington : Essentials of Pharmaceutics (pp. 686): Pharmaceutical Press.
    Yamakawa, S. & Hayashida, K. (2019). Advances in surgical applications of growth factors for wound healing. Burns Trauma, 7, 10. doi:10.1186/s41038-019-0148-1
    Zomer, H. D. & Trentin, A. G. (2018). Skin wound healing in humans and mice: Challenges in translational research. J Dermatol Sci, 90(1), 3-12. doi:10.1016/j.jdermsci.2017.12.009
    劉冠琳 (2015) 生物可分解水凝膠作為局部蛋白質藥物載體用於傷口癒合之研究。 國立成功大學
    鄭淑貞 (2017) 奈米結構脂質載體做為促進慢性傷口癒合蛋白質藥物輸 藥系統之研究。 國立成功大學

    下載圖示 校內:2024-08-26公開
    校外:2024-08-26公開
    QR CODE