簡易檢索 / 詳目顯示

研究生: 葛瑞迪
Gabriel Yedaya Immanuel Ryadi
論文名稱: 多感測器與多時期光學衛星影像地表反射率歸一化使用次超鬆弛演算法
Surface Reflectance Normalization for Cross-sensor and Multi-temporal Satellite Images Using Successive Over Relaxation
指導教授: 林昭宏
Lin, Chao-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 54
中文關鍵詞: 表面反射率不一致表面反射率歸一化連續過鬆弛跨傳感器多時相圖像
外文關鍵詞: Surface reflectance inconsistency, surface reflectance normalization, successive over-relaxation, cross-sensor multitemporal image
ResearchGate: https://www.researchgate.net/profile/Gabriel-Ryadi
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Landsat and Sentinel images are often used for routine monitoring of the Earth’s surface. The challenge in routine monitoring is to minimize the bias of surface reflectance from cross-sensor multitemporal images. A reflectance normalization is performed to reduce the reflectance bias caused by changes in the environmental conditions during the acquisition of multitemporal images
    This research proposed an optimization method for the normalization results to reduce the linear inequalities of multi-temporal images. The method is called Successive over-relaxation. The proposed method involves two main steps; in the first step, the initial step, which normalizes all images to obtain the initial slope, intercepts, and the residual value. Then the looping step, repeats the normalization until the surface reflectance is consistent enough that indicated by minimum residual value. Four bias propagation networks were compared for cross-sensor multitemporal images including bus, tree, ring, and mesh network. In experiments, multitemporal cross-sensor images acquired from Sentinel-2 Multispectral Imager (MSI) and Landsat-8 Operational Land Imager (OLI) were tested. The results demonstrated that the surface reflectance inconsistency in multitemporal cross-sensor images can be significantly reduced by using the proposed normalization method through the mesh and ring normalization. Compared with standard atmospheric correction methods, the RMSE and correlation coefficients of the proposed method were improved until 60.80% for the RMSE and 8.34% for the correlations. Then compared with related methods, the improvement achieved 7.56% for RMSE and 1.19% for the correlations.
    Finally, the proposed method can establish the consistency of the surface reflectance between cross-sensor images compared to the normalization method without applying successive over-relaxations. The qualitative analysis of the normalized results revealed that the results without applying successive over-relaxation were unable to overcome the image discontinuities in the mosaic images, whereas the proposed method can fix that issue.

    Table of Contents Abstract i Acknowledgment iii Table of Contents iv List of Images vi List of Tables viii Chapter 1 Introduction 1 Chapter 2 Related Work 6 2.1 Absolute Radiometric Normalization 6 2.2 Relative Radiometric Normalization 8 Chapter 3 Methodology 11 3.1 System Workflow 11 3.2 Data Processing 13 3.2.1 Canonical Correlation Analysis 13 3.2.2 Multivariate Alteration Detection Transformation 16 3.2.3 Iteratively Reweighted MAD (IR-MAD) 17 3.2.4 Surface Reflectance Normalization (Ordinary Least Square Regression) 18 3.2.5 Successive Over Relaxation (SOR) 18 3.3 Google Earth Engine Platform 22 3.4 Network Topology 24 3.4.1 Bus Normalization 24 3.4.2 Tree Normalization or Star-bus Normalization 25 3.4.3 Ring Normalization 25 3.4.4 Mesh Normalization 26 Chapter 4 Experimental Results and Discussion 27 4.1 Data Material 27 4.2 Landsat 8 Images 27 4.3 Sentinel 2 Images 28 4.4 Visual assessment 30 4.5 Statistical Evaluation 34 4.5.1 Root Mean Square Error 35 4.5.2 Correlation Coefficient 38 4.6 Validation 42 4.7 Failure Analysis 44 4.7.1 Error Propagation 44 4.7.2 PIFs Selection Error 45 Chapter 5 Conclusions 47 References 49

    References
    • Armstrong, J.S., Collopy, F., 1992. Error measures for generalizing about forecasting methods: Empirical comparisons 12. https://doi.org/0169.2070/92
    • Bakari, A., Dahiru, I., 2018. Comparison of Jacobi and Gauss-Seidel Iterative Methods for the Solution of Systems of Linear Equations. ARJOM 8, 1–7. https://doi.org/10.9734/ARJOM/2018/34769
    • Bao, N., Lechner, A.M., Fletcher, A., Mellor, A., Mulligan, D., Bai, Z., 2012. Comparison of relative radiometric normalization methods using pseudo-invariant features for change detection studies in rural and urban landscapes. J. Appl. Remote Sens 6, 063578–1. https://doi.org/10.1117/1.JRS.6.063578
    • Bilal, M., Nazeer, M., Nichol, J.E., Bleiweiss, M.P., Qiu, Z., Jäkel, E., Campbell, J.R., Atique, L., Huang, X., Lolli, S., 2019. A Simplified and Robust Surface Reflectance Estimation Method (SREM) for Use over Diverse Land Surfaces Using Multi-Sensor Data. Remote Sensing 11, 1344. https://doi.org/10.3390/rs11111344
    • Bottenus, N., Byram, B.C., Hyun, D., 2021. Histogram Matching for Visual Ultrasound Image Comparison. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 68, 1487–1495. https://doi.org/10.1109/TUFFC.2020.3035965
    • Broncano-Mateos, C.J., Pinilla, C., Gonzalez-Crespo, R., Castillo-Sanz, A., 2010. Relative Radiometric Normalization of Multitemporal images. IJIMAI 1, 53. https://doi.org/10.9781/ijimai.2010.139
    • Brunet, D., Vrscay, E.R., Zhou Wang, 2012. On the Mathematical Properties of the Structural Similarity Index. IEEE Trans. on Image Process. 21, 1488–1499. https://doi.org/10.1109/TIP.2011.2173206
    • Canty, M.J., Nielsen, A.A., 2008a. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sensing of Environment 112, 1025–1036. https://doi.org/10.1016/j.rse.2007.07.013
    • Canty, M.J., Nielsen, A.A., 2008b. Automatic radiometric normalization of multitemporal satellite imagery. Remote Sensing of Environment 112, 1025–1036. https://doi.org/10.1016/j.rse.2007.07.013
    • Canty, M.J., Nielsen, A.A., Schmidt, M., 2004. Automatic radiometric normalization of multitemporal satellite imagery. Remote Sensing of Environment 91, 441–451. https://doi.org/10.1016/j.rse.2003.10.024
    • Carvalho Júnior, O.A., Guimarães, R.F., Gillespie, A.R., Silva, N.C., Gomes, R.A.T., 2011. A New Approach to Change Vector Analysis Using Distance and Similarity Measures. Remote Sensing 3, 2473–2493. https://doi.org/10.3390/rs3112473
    • Chang, S.-K., Wong, Y.-W., 1978. Optimal histogram matching by monotone gray level transformation. Commun. ACM 21, 835–840. https://doi.org/10.1145/359619.359625
    • Chaves , Jr., P.S., MacKinnon, D.J., 1994. Automatic Detection of Vegetation Changes in the Southwestern United States Using Remotely Sensed Images 14.
    • Chavez, P.S., 1988. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment 24, 459–479. https://doi.org/10.1016/0034-4257(88)90019-3
    • Chen, X., Vierling, L., Deering, D., 2005. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sensing of Environment 98, 63–79. https://doi.org/10.1016/j.rse.2005.05.021
    • Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.-C., Skakun, S.V., Justice, C., 2018. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sensing of Environment 219, 145–161. https://doi.org/10.1016/j.rse.2018.09.002
    • de Carvalho, O., Guimarães, R., Silva, N., Gillespie, A., Gomes, R., Silva, C., de Carvalho, A., 2013. Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression. Remote Sensing 5, 2763–2794. https://doi.org/10.3390/rs5062763
    • Delwart, S., 2015. ESA Standard Document 64.
    • Denaro, L.G., Hung Lin, C., 2019. Nonlinear Relative Radiometric Normalization For Landsat 7 and Landsat 8 Imagery, in: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. Presented at the IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Yokohama, Japan, pp. 1967–1969. https://doi.org/10.1109/IGARSS.2019.8900651
    • Duan, Y., Li, X., Zhang, L., Liu, W., Liu, S., Chen, D., Ji, H., 2020. Detecting spatiotemporal changes of large-scale aquaculture ponds regions over 1988–2018 in Jiangsu Province, China using Google Earth Engine. Ocean & Coastal Management 188, 105144. https://doi.org/10.1016/j.ocecoaman.2020.105144
    • Edelmann, D., Móri, T.F., Székely, G.J., 2021. On relationships between the Pearson and the distance correlation coefficients. Statistics & Probability Letters 169, 108960. https://doi.org/10.1016/j.spl.2020.108960
    • Elvidge, G., Yuan, D., Weerackoon, R., Lunetta, R., 1995. Relative Radiometric Normalization of Landsat Multispectral Scanner (MSS) Data Using an Automatic Scattergram Controlled Regression 61, 6.
    • Galiatsatos, N., Donoghue, D.N.M., Knoxt, D., Smith, K., 2007. Radiometric Normalisation of Multisensor/Multitemporal Satellite Images with Quality Control for Forest Change Detection 6.
    • Garg, P., 2017. A Comparative Study on Histogram Equalization and Cumulative Histogram Equalization 3, 3.
    • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
    • Hadjidimos, A., 2000. Successive overrelaxation (SOR) and related methods. Journal of Computational and Applied Mathematics 123, 177–199. https://doi.org/10.1016/S0377-0427(00)00403-9
    • Hall, F.G., Strebel, D.E., Nickeson, J.E., Goetz, S.J., 1991. Radiometric rectification: Toward a common radiometric response among multidate, multisensor images. Remote Sensing of Environment 35, 11–27. https://doi.org/10.1016/0034-4257(91)90062-B
    • Herman, G.T., Lent, A., Lutz, P.H., 1978. Relaxation methods for image reconstruction. Commun. ACM 21, 152–158. https://doi.org/10.1145/359340.359351
    • Kalaiselvi, B., Thangamani, M., 2020. An efficient Pearson correlation based improved random forest classification for protein structure prediction techniques. Measurement 162, 107885. https://doi.org/10.1016/j.measurement.2020.107885
    • Lantzanakis, G., Mitraka, Z., Chrysoulakis, N., 2016. Comparison of physically and image based atmospheric correction methods for Sentinel-2 satellite imagery, in: Themistocleous, K., Hadjimitsis, D.G., Michaelides, S., Papadavid, G. (Eds.), . Presented at the Fourth International Conference on Remote Sensing and Geoinformation of the Environment, Paphos, Cyprus, p. 96880A. https://doi.org/10.1117/12.2242889
    • Li, P., Jiang, L., Feng, Z., 2013. Cross-comparison of vegetation indices derived from landsat-7 enhanced thematic mapper plus (ETM+) and landsat-8 operational land imager (OLI) sensors. Remote Sensing 6, 310–329. https://doi.org/10.3390/rs6010310
    • Massart, D.L., Smeyers-Verbeke, J., Capron, X., Schlesier, K., 2005. Visual Presentation of Data 4.
    • Mateo-García, G., Gómez-Chova, L., Amorós-López, J., Muñoz-Marí, J., Camps-Valls, G., 2018. Multitemporal Cloud Masking in the Google Earth Engine. Remote Sensing 10, 1079. https://doi.org/10.3390/rs10071079
    • Mu, Y., Liu, X., Wang, L., 2018. A Pearson’s correlation coefficient based decision tree and its parallel implementation. Information Sciences 435, 40–58. https://doi.org/10.1016/j.ins.2017.12.059
    • Ndajah, P., Kikuchi, H., Yukawa, M., Watanabe, H., Muramatsu, S., 2010. SSIM Image Quality Metric for Denoised Images 6.
    • Nielsen, A.A., 2007. The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data. IEEE Trans. on Image Process. 16, 463–478. https://doi.org/10.1109/TIP.2006.888195
    • Nielsen, A.A., Conradsen, K., Simpson, J.J., 1998. Multivariate alteration detection MAD and MAF postprocessing in multispectral bitemporal image data New approaches to change detection studies.pdf. Remote Sensing of Environment 4257, 1–19.
    • Olthof, I., Pouliot, D., Fernandes, R., Latifovic, R., 2005. Landsat-7 ETM+ radiometric normalization comparison for northern mapping applications. Remote Sensing of Environment 95, 388–398. https://doi.org/10.1016/j.rse.2004.06.024
    • Paolini, L., Grings, F., Sobrino, J.A., Jiménez Muñoz, J.C., Karszenbaum, H., 2006. Radiometric correction effects in Landsat multi‐date/multi‐sensor change detection studies. International Journal of Remote Sensing 27, 685–704. https://doi.org/10.1080/01431160500183057
    • Philpot, W., Ansty, T., 2013. Analytical Description of Pseudoinvariant Features. IEEE Trans. Geosci. Remote Sensing 51, 2016–2021. https://doi.org/10.1109/TGRS.2012.2227328
    • Rahman, M., 2016. Detection of Land Use/Land Cover Changes and Urban Sprawl in Al-Khobar, Saudi Arabia: An Analysis of Multi-Temporal Remote Sensing Data. IJGI 5, 15. https://doi.org/10.3390/ijgi5020015
    • Roy, A., Inamdar, A.B., 2019. Multi-temporal Land Use Land Cover (LULC) change analysis of a dry semi-arid river basin in western India following a robust multi-sensor satellite image calibration strategy. Heliyon 5, e01478. https://doi.org/10.1016/j.heliyon.2019.e01478
    • Sadeghi, V., Ahmadi, F.F., Ebadi, H., 2017. A new automatic regression-based approach for relative radiometric normalization of multitemporal satellite imagery. Comp. Appl. Math. 36, 825–842. https://doi.org/10.1007/s40314-015-0254-z
    • Said, N., Ahmad, K., Riegler, M., Pogorelov, K., Hassan, L., Ahmad, N., Conci, N., 2019. Natural disasters detection in social media and satellite imagery: a survey. Multimed Tools Appl 78, 31267–31302. https://doi.org/10.1007/s11042-019-07942-1
    • Santra, S., Acharjya, P.P., 2013. A Study And Analysis on Computer Network Topology For Data Communication. IJETAE.
    • S.C. Stuhler, R. Leiterer, P.C. Joerg, H. Wulf, M.E. Schaepman, 2016. Generating a cloud-free, homogeneous Landsat-8 mosaic of Switzerland using Google Earth Engine. https://doi.org/10.13140/RG.2.1.2432.0880
    • Schott, J.R., Salvaggio, C., Volchok, W.J., 1988. Radiometric scene normalization using pseudoinvariant features. Remote Sensing of Environment 26, 1–16. https://doi.org/10.1016/0034-4257(88)90116-2
    • Sebastianelli, A., Del Rosso, M.P., Ullo, S.L., 2020. Automatic Dataset Builder for Machine Learning Applications to Satellite Imagery. arXiv:2008.01578 [eess].
    • Sun, K., HaiGang Sui, Li, D., Chuan Xu, 2011. A new relative radiometric consistency processing method for change detection based on wavelet transform and a low-pass filter. Science China Technological Sciences 7, 3–10.
    • Syariz, M.A., Lin, B.-Y., Denaro, L.G., Jaelani, L.M., Van Nguyen, M., Lin, C.-H., 2019. Spectral-consistent relative radiometric normalization for multitemporal Landsat 8 imagery. ISPRS Journal of Photogrammetry and Remote Sensing 147, 56–64. https://doi.org/10.1016/j.isprsjprs.2018.11.007
    • Teillet, P.M., 1986. Image correction for radiometric effects in remote sensing. International Journal of Remote Sensing 7, 1637–1651. https://doi.org/10.1080/01431168608948958
    • Thirumagal Mills College, nanithi, Dr.S.K., akshmi, N.G., vizhi, M.M., wari, M.S., 2018. A Study on Comparison of Jacobi, Gauss-Seidel and Sor Methods for the Solution in System of Linear Equations. IJMTT 56, 214–222. https://doi.org/10.14445/22315373/IJMTT-V56P531
    • Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., Morcette, J.-J., 1997. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sensing 35, 675–686. https://doi.org/10.1109/36.581987
    • Wu, W., Sun, X., Wang, X., Fan, J., Luo, J., Shen, Y., Yang, Y., 2018. A Long Time-Series Radiometric Normalization Method for Landsat Images. Sensors 18, 4505. https://doi.org/10.3390/s18124505
    • Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B., Shi, J., Dickinson, R., 2013. The role of satellite remote sensing in climate change studies. Nature Clim Change 3, 875–883. https://doi.org/10.1038/nclimate1908
    • Yuan, D., Elvidge, C.D., 1996. Comparison of relative radiometric normalization techniques. ISPRS Journal of Photogrammetry and Remote Sensing 51, 117–126. https://doi.org/10.1016/0924-2716(96)00018-4
    • Zhang, H., Shen, C., Li, Y., Cao, Y., Liu, Y., Yan, Y., 2019. Exploiting temporal consistency for real-time video depth estimation. arXiv:1908.03706 [cs].
    • Zhong, C., Xu, Q., Li, B., 2016. Relative Radiometric Normalization for Multitemporal Remote Sensing Images by Hierarchical Regression. IEEE Geosci. Remote Sensing Lett. 13, 217–221. https://doi.org/10.1109/LGRS.2015.2506643

    下載圖示 校內:2024-02-29公開
    校外:2024-02-29公開
    QR CODE