簡易檢索 / 詳目顯示

研究生: 許成家
Hsu, Cheng-Chia
論文名稱: 以BLE進行廠區人員分區標識定位及其雲端聯網管理系統設計與實現
Design and Implementation of Employee Area Positioning with Bluetooth Low Energy and its Networked Management System based on Cloud Computing for Factory
指導教授: 陳響亮
Chen, Shang-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 83
中文關鍵詞: 藍芽4.0人員定位資訊管理系統雲端運算智慧工廠
外文關鍵詞: Smart Factory, Manufacturing Private Cloud, Internet of Things, Indoor Positioning Technology, Bluethooth 4.0
相關次數: 點閱:115下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業4.0背景下,「智慧工廠」一詞應運而生,製造業無不升級轉型,使用大數據與人工智慧輔助企業軟體、硬體、機台至資訊整合平台,要實踐上述情境,企業勢必將針對廠區環境進行聯網化管理,獲取大量製造數據。並進而利用雲端運算,將其分析為有用資訊,最終結合虛實整合系統達成高協同性之決策輔助。
    為使廠區系統有效認知特定人員並予以關鍵資訊,人員位置資料之獲取為必要條件,然而現今面向製造現場之資訊系統,即製造執行系統(Manufacturing Execution System, MES),於廠區人員管理輔助甚少,亦無法提供人員位置資訊,MES作為企業資訊系統之信息集線器(Information Hub),若能有效獲區人員位置信息,可輔助廠區系統感知人員位置與身分,發展CPS之人機協同概念,是為製造業邁向工業4.0關鍵之一。
    隨著物聯網與雲端計算的崛起,無線感知技術於廠區應用變為可靠,廠區元件及人員之定位追蹤亦成為可能,本研究即針對廠區人員定位提出一包含物聯網基底、私有雲雲端架構至應用定位整合系統之聯網化廠區環境建置方法,並使用藍芽4.0新興技術,即低功耗藍芽(Bluetooth Low Energy, BLE)進行實作,規劃廠區人員分區標識定位技術與發展定位聯網管理系統,除應用系統之建置測試外,本研究亦對人員定位於生產製造之相關效益進行探討,作為企業升級「智慧工廠」之人員管理發展藍圖。

    To enhance industrial competitiveness and increase productivity, every country has strived to create a smart factory by introducing technologies such as Internet of Things, big data and artificial intelligence into production line and build cyber-physical system for the purpose of promoting manufacturing efficiency. For mission assignment, production line management or manufacturing field analysis, the location information of employee, machine and material is very essential. To promote manufacturing efficiency, of course, the location information became more important.
    A Bluetooth low energy (BLE) positioning system for the manufacturing is developed in this research. A "Sensor tracking" mechanism is addressed and adopted, which uses Beacon to catch the location information and a BLE receiver is also used to receive the broadcasting information from Beacon.
    The position information from the BLE receiver will be compared with the data in the database for calculating the location of the target. The status of the target may also be obtained by using the data from the BLE receiver. Comparing with the mobile device, this method can reduce energy consumption and make the maintenance simple and easy.
    In this research, a system based on cloud computing for testing BLE positioning is implemented. This system can individed into three parts (Internet of Things based on BLE, Cloud Computing and Website). With the Internet of Things (IoT), cloud computing system can utilize indoor positioning technique to exactly catch the location of each employee.
    Finally, several of real applications of employee positioning for manufacturing are discussed. Although, these applications of BLE mainly focus on the employee management in this paper. We considered that it would also do an excellent job in manufacturing logistics or other topics. BLE has numerous potential and it will be the top technology in manufacture industry in the future.

    摘 要 I 誌 謝 VIII 目 錄 IX 表 目 錄 XII 圖 目 錄 XIII 縮 寫 表 XV 第一章 緒 論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 6 1.4 章節敘述 7 第二章 文獻探討 8 2.1 工業4.0關鍵技術與定位聯網廠區環境之探討 9 2.2 各類定位技術使用與比較 13 2.3 Bluetooth Low Energy(BLE)應用現況 15 第三章 廠區聯網架構與人員定位技術之規劃 18 3.1 基於BLE之 Sensing Tracking定位規劃 19 3.2 廠內分區標識定位機制規劃 20 3.3 廠區定位用物聯網規劃 23 3.3.1 BLE主動信號發射器模組(位置資訊廣播節點) 24 3.3.2 藍芽訊號接收器模組(位置資訊擷取節點) 24 3.3.3 廠區聯網節點部署 25 3.3.4 BLE資料擷取機制 26 第四章 廠區聯網與人員定位管理系統之設計與規劃 29 4.1 系統相關之資料表規劃與建置 34 4.2 低功耗藍芽訊號收集模組 36 4.3 位置分析計算模組 38 4.4 權限管理模組 40 4.5 廠區聯網管理模組 42 4.6 人員定位資訊管理模組 44 第五章 系統實作與測試分析 46 5.1 定位物聯網部署與建置 46 5.1.1 內網伺服器部署 46 5.1.2 聯網各節點硬體使用 47 5.1.3 BLE Receiver系統環境配置 50 5.1.4 低功耗藍芽訊號收集模組實作測試 51 5.1.5 資料庫BLE訊號傳輸壓力測試 52 5.2 位置分析計算模組實作 53 5.2.1 Beacon位置解析 53 5.2.2 位置異動響應 56 5.2.3 歷史路徑追蹤 57 5.2.4 錯誤警報偵測 58 5.3 聯網管理與人員定位管理系統實作 59 5.3.1 權限管理模組 59 5.3.2 廠區聯網管理模組 62 5.3.3 人員定位資訊管理 64 5.3.4 實際運作之模擬情境 65 第六章 應用廠區人員定位之生產效能改善探討 67 6.1 人員定位與廠區系統整合概念 68 6.2 基於人員定位之未來製程應用探討 70 6.3 人員定位應用於製程之效益分析 75 第七章 討 論 78 第八章 結 論 79 參考文獻 81

    [1] S. Wang, et al, “Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination,” Computer Networks, Vol. 101, pp. 158-168, 2016.
    [2] D. Gorecky, et al, “Human-machine-interaction in the industry 4.0 era,” Industrial Informatics (INDIN), 2014 12th IEEE International Conference on. IEEE, 2014.
    [3] M. Brettel, et al, “How virtualization, decentralization and network building change the manufacturing landscape: An industry 4.0 perspective,” International Journal of Mechanical, Industrial Science and Engineering, Vol. 8.1, pp. 37-44, 2014.
    [4] T. Stock, G. Seliger, “Opportunities of sustainable manufacturing in industry 4.0,” Procedia Cirp Vol. 40, pp. 36-541, 2016.
    [5] J. Koch, et al, “Indoor localisation of humans, objects, and mobile robots with RFID infrastructure,” Hybrid Intelligent Systems, 2007. HIS 2007. 7th International Conference on. IEEE, 2007.
    [6] Wikipedia, “Manufacturing execution system,” Retrieved from:
    https://en.wikipedia.org/wiki/Manufacturing_execution_system
    [7] 資通電腦ciMes, “MES工廠製造執行系統,” Retrieved from: https://cimes.ares.com.tw/products/module
    [8] 致茂電子, “MES製造資訊系統,” Retrieved from: http://www.chroma.com.tw/product/MES.htm
    [9] 台塑企業, “MES製造執行系統解決方案,” Retrieved from: http://www.efpg.com.tw/efpg/product_cim/cim_2.asp
    [10] 正航資訊, “MES製造生產執行系統的四大管理功能,” Retrieved from:
    http://www.chi.com.tw/business-manager/mes.html
    [11] H. Lasi, et al, “Industry 4.0." Business & Information Systems Engineering,” Vol. 6.4, pp. 239-242, 2014.
    [12] J. Lee, et al, “Service innovation and smart analytics for industry 4.0 and big data environment,” Procedia Cirp, Vol. 16, pp. 3-8, 2014.
    [13] J. Lee, et al, “A cyber-physical systems architecture for industry 4.0-based manufacturing systems,” Manufacturing Letters, Vol. 3, pp. 18-23, 2015.
    [14] F. Shrouf, et al, “Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm,” Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on. IEEE, 2014.
    [15] M. Broy, “Cyber-Physikal Systems: Innovation durch softwareintensive eingebettete Systeme,” 2010.
    [16] N. Li, et al, “Performance-based evaluation of RFID-based indoor location sensing solutions for the built environment,” Advanced Engineering Informatics, Vol. 25.3, pp. 535-546, 2011.
    [17] T. Teixeira, et al, “A survey of human-sensing: Methods for detecting presence, count, location, track, and identity,” ACM Computing Surveys, Vol. 5.1, pp. 59-69, 2010.
    [18] R. Tesoriero, et al, “Improving location awareness in indoor spaces using RFID technology,” Expert Systems with Applications, Vol. 37.1, pp. 894-898, 2010.
    [19] R. Tesoriero, et al, “Using active and passive RFID technology to support indoor location-aware systems,” IEEE Transactions on Consumer Electronics, Vol. 54.2, 2008.
    [20] M. Andersson, “Use case possibilities with Bluetooth low energy in IoT applications,” White Paper, 2014.
    [21] W. Roy, et al, “Bluetooth LE Finds Its Niche,” IEEE Pervasive Computing, Vol No. 12, Issue No. 4, pp.12 – 16, 2013.
    [22] Digitimes, “IoT無線&行動通訊技術與應用,” Retrieved from:
    https://www.digitimes.com.tw/iot/article.asp?cat=130&id=0000418512_KS84YFXR2Q6OY91KZW3CW
    [23] Estimote, “Beacon產品介紹,” Retrieved from:
    https://estimote.com
    [24] Raspberrypi, “Raspberry pi zero,” Retrieved from:
    https://www.raspberrypi.org
    [25] THlight 太和光, “Beacon產品介紹,” Retrieved from:
    http://www.thlight.com/product/b402X.html
    [26] Bluecats, “Beacon產品介紹,” Retrieved from:
    https://www.bluecats.com
    [27] BlueZ, “介紹,” Retrieved from:
    http://www.bluez.org/about
    [28] pymssql, “Python SQL 驅動程式介紹,” Retrieved from:
    http://www.pymssql.org/en/stable

    無法下載圖示 校內:2023-01-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE