簡易檢索 / 詳目顯示

研究生: 沈承恩
Shen, Chen-En
論文名稱: 以外部刺激控制甲氨螵呤釋放:選擇細胞外或胞內遞送途徑?
Stimuli Triggering MTX Release: Extracellular or Intracellular Delivery?
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 69
中文關鍵詞: 葉酸運送載體葉酸受體甲氨螵呤上轉換材料
外文關鍵詞: reduced folate carrier, folate receptor, MTX, stimulus, upconversion
相關次數: 點閱:88下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 葉酸載體(Reduced folate carrier, RFC),是哺乳類動物細胞中抗葉酸藥物,如甲氨蝶呤(Methotrexate, MTX)的主要運送通道的轉運蛋白。另一方面,葉酸受體(Folate receptors, FRs)可將葉酸與抗葉酸藥物,透過內吞做用將其胞吞進細胞中。在癌細胞膜表面上,常過度表現葉酸受體,迄今納米藥物載體設計上,通常是經由葉酸受體介導的內吞作用,然後讓藥物載體在細胞內釋放MTX。 那麼使用納米載體運送MTX時,應該在細胞外或細胞內釋放,才能提供殺死癌細胞的最佳功效? 為了解決這個問題,本實驗設計了使用近紅外光刺激調控釋放MTX奈米材料,以證明在HeLa細胞中,MTX的細胞外(透過RFC路徑)和細胞內(透過FRs路徑)釋放,哪一種路徑對於奈米藥物載體釋放MTX有較佳的效率,而結果顯示透過細胞內運送對HeLa細胞有更好的功效。

    Reduced folate carrier (RFC) is a transporting protein as the major delivery channel for the antifolates, like methotrexate (MTX), in mammalian cells. On the other hand, folate receptors (FRs) is eligible to activate endocytotic pathway to folate and antifolates. Folate receptor overexpressed on several cancer cells have often been an access for MTX carried made by Nanocarriers via receptor-mediated endocytosis. A question is raised to be answered if MTX should be called extracellularly Or intracellularly to achieve optimal efficacy in killing cancer cells when using nanocarriers. To solve this question, A photo-triggering nano-motif based on near-infrared light has been designed to demonstrate extracellular and intracellular Release of MTX in HeLa cells. The results display intracellular delivery leading to better efficacy against HeLa Cells compared to extracellular approach.

    目錄 中文摘要 I 英文延伸摘要 II 目錄 XIII 第一章 緒論 1 1-1甲氨螵呤簡介 2 1-1-1 甲氨螵呤藥物特性簡介 2 1-2材料之簡介 5 1-2-1 上轉換材料特性簡介 5 1-2-2 上轉換材料之光學性質簡介 7 第二章 實驗藥品與儀器設備 15 2-1實驗藥品 16 2-1-1合成 CS-UCMR@SiO2/NPA/MTX 及其相關藥品 16 2-1-2細胞實驗所需之化學藥品 18 2-2儀器設備 19 第三章 以外部刺激控制甲氨蝶呤釋放:選擇細胞外或胞內遞送途徑 21 3-1研究動機與設計概念 22 3-2實驗步驟 24 3-2-1 Core NaYF4 :Yb,Tm Upconversion nanorod (core UCNR) 粒子的合成 24 3-2-2 Core-shell Upconversion nanorod (CS-UCNR) 奈米粒子的合成 25 3-2-3 CS-UCNR@SiO2 合成 27 3-2-4 將CS-UCNR@SiO2 表面修飾上3-氨基丙基三甲氧基甲矽烷(APTES) 28 3-2-5將CS-UCNR@SiO2/APTES 表面修飾上 Fmoc-NPA 28 3-2-6 CS-UCNR@SiO2/APTES/Fmoc-NPA 奈米粒子表面的Fmoc保護基移除 29 3-2-7將抗癌藥物Methotrexate修飾於CS-UCNR@SiO2/APTES/NPA 表面之合成 (CS-UCNR@SiO2/APTES/NPA/MTX) 29 3-2-8癌細胞培養與材料生物毒性測試 (MTT 試驗) 30 3-2-9癌細胞培養與材料攝入量測試 30 3-3 實驗結果與討論 32 3-3-1 CS-UCNR@SiO2與CS-UCNR@SiO2結構分析: TEM、HR-TEM、XRD 32 3-3-2 CS-UCNR@SiO2/APTES/NPA/MTX 之光學性質探討:UV-vis與Fluorescence (FL) 33 第四章 結論 47 參考文獻 48

    (1) Matherly, L. H.; Hou, Z. J.; Deng, Y. J. Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev. 2007, 26, 111-128.
    (2) Visentin, M.; Zhao, R. B.; Goldman, I. D. Augmentation of Reduced Folate Carrier-Mediated Folate/Antifolate Transport through an Antiport Mechanism with 5-Aminoimidazole-4-Carboxamide Riboside Monophosphate. Mol. Pharmacol. 2012, 82, 209-216.
    (3) Hou, Z. J.; Wu, J. M.; Ye, J.; Cherian, C.; Matherly, L. H. Substrate-specific binding and conformational changes involving Ser(313) and transmembrane domain 8 of the human reduced folate carrier, as determined by site-directed mutagenesis and protein cross-linking. Biochem. J. 2010, 430, 265-274.
    (4) Zhao, R. B.; Diop-Bove, N.; Visentin, M.; Goldman, I. D.: Mechanisms of Membrane Transport of Folates into Cells and Across Epithelia. In Annual Review of Nutrition, Vol 31; Cousins, R. J., Bier, D. M., Bowman, B. A., Eds.; Annual Review of Nutrition; Annual Reviews: Palo Alto, 2011; Vol. 31; pp 177-201.
    (5) Wang, Y. H.; Zhao, R. B.; Goldman, I. D. Characterization of a folate transporter in HeLa cells with a low pH optimum and high affinity for pemetrexed distinct from the reduced folate carrier. Clin. Cancer Res. 2004, 10, 6256-6264.
    (6) Gorlick , R.; Goker , E.; Trippett , T.; Waltham , M.; Banerjee , D.; Bertino , J. R. Intrinsic and Acquired Resistance to Methotrexate in Acute Leukemia. New England Journal of Medicine 1996, 335, 1041-1048.
    (7) Wu, J.; Sailor, M. Chitosan Hydrogel-Capped Porous SiO2 as a pH Responsive Nano-Valve for Triggered Release of Insulin. Adv. Funct. Mater. 2009, 19, 733-741.
    (8) Chen, C.; Ke, J. Y.; Zhou, X. E.; Yi, W.; Brunzelle, J. S.; Li, J.; Yong, E. L.; Xu, H. E.; Melcher, K. Structural basis for molecular recognition of folic acid by folate receptors. Nature 2013, 500, 486-+.
    (9) Choi, S. K.; Thomas, T. P.; Li, M. H.; Desai, A.; Kotlyar, A.; Baker, J. R. Photochemical release of methotrexate from folate receptor-targeting PAMAM dendrimer nanoconjugate. Photochem. Photobiol. Sci. 2012, 11, 653-660.
    (10) Wong, P. T.; Choi, S. K. Mechanisms and Implications of Dual-Acting Methotrexate in Folate-Targeted Nanotherapeutic Delivery. Int. J. Mol. Sci. 2015, 16, 1772-1790.
    (11) Ledermann, J. A.; Canevari, S.; Thigpen, T. Targeting the folate receptor: diagnostic and therapeutic approaches to personalize cancer treatments. Ann. Oncol. 2015, 26, 2034-2043.
    (12) Lin, J. Y.; Li, Y. X.; Li, Y.; Cui, F.; Yu, F.; Wu, H. J.; Xie, L. Y.; Luo, F. H.; Hou, Z. Q.; Lin, C. J. Self-targeted, bacillus-shaped, and controlled-release methotrexate prodrug polymeric nanoparticles for intratumoral administration with improved therapeutic efficacy in tumor-bearing mice. J. Mat. Chem. B 2015, 3, 7707-7717.
    (13) Nogueira, D. R.; Tavano, L.; Mitjans, M.; Perez, L.; Infante, M. R.; Vinardell, M. P. In vitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles. Biomaterials 2013, 34, 2758-2772.
    (14) Gupta, J.; Bhargava, P.; Bahadur, D. Methotrexate conjugated magnetic nanoparticle for targeted drug delivery and thermal therapy. J. Appl. Phys. 2014, 115, 3.
    (15) Zhang, X. M.; Zheng, Y. Y.; Wang, Z. G.; Huang, S.; Chen, Y.; Jiang, W.; Zhang, H.; Ding, M. X.; Li, Q. S.; Xiao, X. Q.; Luo, X.; Wang, Z. B.; Qi, H. B. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and Synergistic Targeted therapy of residual tumor during HIFU ablation. Biomaterials 2014, 35, 5148-5161.
    (16) Yoon, S. A.; Choi, J. R.; Kim, J. O.; Shin, J. Y.; Zhang, X.; Kang, J. H. Influence of Reduced Folate Carrier and Dihydrofolate Reductase Genes on Methotrexate-Induced Cytotoxicity. Cancer Res. Treat. 2010, 42, 163-171.
    (17) Peters, F. B.; Brock, A.; Wang, J. Y.; Schultz, P. G. Photocleavage of the Polypeptide Backbone by 2-Nitrophenylalanine. Chem. Biol. 2009, 16, 148-152.
    (18) Kim, M. S.; Diamond, S. L. Photocleavage of o-nitrobenzyl ether derivatives for rapid biomedical release applications. Bioorg. Med. Chem. Lett. 2006, 16, 4007-4010.
    (19) Wagner, R.; Rosenberg, M.; Estensen, R. ENDOCYTOSIS IN CHANG LIVER CELLS - QUANTITATION BY SUCROSE-H-3 UPTAKE AND INHIBITION BY CYTOCHALASIN-B. J. Cell Biol. 1971, 50, 804-+.
    (20) Gebhardt, R.; Robenek, H. LIGAND-DEPENDENT REDISTRIBUTION OF THE IGA RECEPTOR ON CULTURED RAT HEPATOCYTES AND ITS DISTURBANCE BY CYTOCHALASIN-B. J. Histochem. Cytochem. 1987, 35, 301-309.
    (21) Hilgenbrink, A. R.; Low, P. S. Folate receptor-mediated drug targeting: From therapeutics to diagnostics. J. Pharm. Sci. 2005, 94, 2135-2146.
    (22) Auzel, F. E. MATERIALS AND DEVICES USING DOUBLE-PUMPED PHOSPHORS WITH ENERGY-TRANSFER. Proc. IEEE 1973, 61, 758-786.
    (23) Kohler, N.; Sun, C.; Wang, J.; Zhang, M. Methotrexate-Modified Superparamagnetic Nanoparticles and Their Intracellular Uptake into Human Cancer Cells. Langmuir 2005, 21, 8858-8864.
    (24) Matherly, L. H.; Goldman, D.: Membrane transport of folates. In Vitamins and Hormones - Advances in Research and Applications, Vol 66; Litwack, G., Ed.; Vitamins and Hormones; Elsevier Academic Press Inc: San Diego, 2003; Vol. 66; pp 403-456.
    (25) Wang, F.; Liu, X. G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976-989.
    (26) Diamente, P. R.; Raudsepp, M.; van Veggel, F. Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 mu m photoluminescence. Adv. Funct. Mater. 2007, 17, 363-368.
    (27) Xu, Z.; Li, C.; Yang, P.; Zhang, C.; Huang, S.; Lin, J. Rare Earth Fluorides Nanowires/Nanorods Derived from Hydroxides: Hydrothermal Synthesis and Luminescence Properties. Crystal Growth & Design 2009, 9, 4752-4758.
    (28) Bloembergen, N. SOLID STATE INFRARED QUANTUM COUNTERS. Phys. Rev. Lett. 1959, 2, 84-85.
    (29) Wang, F.; Banerjee, D.; Liu, Y. S.; Chen, X. Y.; Liu, X. G. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 2010, 135, 1839-1854.
    (30) Mai, H.-X.; Zhang, Y.-W.; Si, R.; Yan, Z.-G.; Sun, L.-d.; You, L.-P.; Yan, C.-H. High-Quality Sodium Rare-Earth Fluoride Nanocrystals:  Controlled Synthesis and Optical Properties. Journal of the American Chemical Society 2006, 128, 6426-6436.
    (31) Na, H.; Woo, K.; Lim, K.; Jang, H. S. Rational morphology control of beta-NaYF4:Yb,Er/Tm upconversion nanophosphors using a ligand, an additive, and lanthanide doping. Nanoscale 2013, 5, 4242-4251.
    (32) Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061-1065.
    (33) Chivian, J. S.; Case, W. E.; Eden, D. D. PHOTON AVALANCHE - NEW PHENOMENON IN PR-3(+)-BASED INFRARED QUANTUM COUNTERS. Appl. Phys. Lett. 1979, 35, 124-125.
    (34) Gudel, H. U.; Pollnau, M. Near-infrared to visible photon upconversion processes in lanthanide doped chloride, bromide and iodide lattices. J. Alloy. Compd. 2000, 303, 307-315.
    (35) Wu, S.; Butt, H. J. Near-Infrared-Sensitive Materials Based on Upconverting Nanoparticles. Adv. Mater. 2016, 28, 1208-1226.
    (36) He, S. Q.; Krippes, K.; Ritz, S.; Chen, Z. J.; Best, A.; Butt, H. J.; Mailander, V.; Wu, S. Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. Chem. Commun. 2015, 51, 431-434.
    (37) Wu, W. T.; Shen, J.; Banerjee, P.; Zhou, S. Q. Core-shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials 2010, 31, 7555-7566.
    (38) Choi, K. Y.; Swierczewska, M.; Lee, S.; Chen, X. Y. Protease-Activated Drug Development. Theranostics 2012, 2, 156-178.
    (39) Kim, H. J.; Lee, S. M.; Park, K. H.; Mun, C. H.; Park, Y. B.; Yoo, K. H. Drug-loaded gold/iron/gold plasmonic nanoparticles for magnetic targeted chemo-photothermal treatment of rheumatoid arthritis. Biomaterials 2015, 61, 95-102.
    (40) Peer, D.; Karp, J. M.; Hong, S.; FaroKhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751-760.
    (41) Zhao, L. Z.; Peng, J. J.; Huang, Q.; Li, C. Y.; Chen, M.; Sun, Y.; Lin, Q. N.; Zhu, L. Y.; Li, F. Y. Near- Infrared Photoregulated Drug Release in Living Tumor Tissue via Yolk- Shell Upconversion Nanocages. Adv. Funct. Mater. 2014, 24, 363-371.
    (42) Chien, Y. H.; Chou, Y. L.; Wang, S. W.; Hung, S. T.; Liau, M. C.; Chao, Y. J.; Su, C. H.; Yeh, C. S. Near-Infrared Light Photocontrolled Targeting, Bioimaging, and Chemotherapy with Caged Upconversion Nanoparticles in Vitro and in Vivo. ACS Nano 2013, 7, 8516-8528.
    (43) Fan, N. C.; Cheng, F. Y.; Ho, J. A. A.; Yeh, C. S. Photocontrolled Targeted Drug Delivery: Photocaged Biologically Active Folic Acid as a Light-Responsive Tumor-Targeting Molecule. Angew. Chem.-Int. Edit. 2012, 51, 8806-8810.
    (44) Liu, J. N.; Liu, Y.; Bu, W. B.; Bu, J. W.; Sun, Y.; Du, J. L.; Shi, J. L. Ultrasensitive Nanosensors Based on Upconversion Nanoparticles for Selective Hypoxia Imaging in Vivo upon Near-Infrared Excitation. Journal of the American Chemical Society 2014, 136, 9701-9709.
    (45) Wojtuszkiewicz, A.; Peters, G. J.; van Woerden, N. L.; Dubbelman, B.; Escherich, G.; Schmiegelow, K.; Sonneveld, E.; Pieters, R.; van de Ven, P. M.; Jansen, G.; Assaraf, Y. G.; Kaspers, G. J. L.; Cloos, J. Methotrexate resistance in relation to treatment outcome in childhood acute lymphoblastic leukemia. J. Hematol. Oncol. 2015, 8, 13.

    下載圖示 校內:2020-08-16公開
    校外:2022-08-16公開
    QR CODE