簡易檢索 / 詳目顯示

研究生: 宋品寬
Sung, Pin-Kuan
論文名稱: 以聚合物分散液晶盒製作透鏡陣列全息光學元件與應用
Fabrications and applications of holographic optical elements as lens arrays based on polymer-dispersed liquid crystal cells
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 83
中文關鍵詞: 聚合物分散液晶盒全息光學元件投影式積分成像系統
外文關鍵詞: Polymer dispersed liquid crystal cell, Holographic optical element, Projection-type integral imaging system
相關次數: 點閱:172下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討以聚合物分散液晶盒進行全息曝光,製作透鏡陣列全息光學元件,並應用於投影式積分成像系統,還原立體影像。論文首先對聚合物分散液晶盒在全息曝光後可達成的繞射效率進行實驗,探討如光聚合單體比重、曝光強度與曝光時間等實驗條件對繞射效率之影響,最後以達到繞射效率最高值之實驗參數製作全息光學元件。此外,本論文亦建立與改善合適的投影式積分成像系統,提升全息光學元件之影像能力,包括移除擴散片(Diffuser),改變單元影像(Elemental image)之建立方式等。
    本論文使用之聚合物分散液晶盒,以E7液晶與DPHPA光聚合單體為材料,實驗結果顯示,將40 wt% E7液晶、55 wt% DPHPA光聚合單體與5 wt%光起始劑(H-Nu-Blue 640、Borate-V、NVP),以6 mW/cm2曝光強度進行曝光40分鐘,液晶盒具有繞射效率最高值,實驗之全息光學元件以反射式光柵的方式製作,錄製的反射式光柵可達到32.5%繞射效率,製作的透鏡陣列全息光學元件亦具有18.4%的繞射效率;本研究成功將透鏡陣列全息光學元件應用於投影式積分成像系統,還原立體影像,其中,使用之投影式積分成像系統將不需要擴散片,並且利用電腦產生之單元影像,獲得良好的立體還原影像。

    In this thesis, the main investigation is to fabricate holographic optical elements (HOEs) as lens arrays by means of holographic exposure of a He-Ne laser in polymer-dispersed liquid crystal (PDLC) cells. The optical performance of fabricated HOEs is also measured including diffraction efficiency, imaging capabilities in integral imaging system, and so on.
    The main ingredients were DPHPA photo-curable monomers and E7 liquid crystals in the PDLC cells prepared to fabricate HOEs. As a result, the maximum 32.5% diffraction efficiency was experimentally achieved as a reflective grating in the exposed PDLC cells. By contrast, it was 18.4% diffraction efficiency for the fabricated HOEs as lens arrays. The fabricated HOEs as lens arrays were demonstrated the 3D imaging capabilities in the projection-type integral imaging system.
    In addition, a lot of improvements the projection-type integral imaging system were demonstrated via HOE lens arrays including no optical diffuser and usage of computer generated elemental images.

    摘要 I Abstract II 誌謝 VIII 目錄 X 圖目錄 XIII 表目錄 XIX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 第二章 實驗原理 8 2.1 液晶的介紹 8 2.1.1 向列型液晶 9 2.1.2 液晶雙折射性 9 2.1.3 施加電場對液晶的影響 11 2.1.4 光聚合單體與液晶混合物 12 2.2 光聚合單體與液晶混合物的相分離機制 14 2.3 全息光學元件介紹 14 2.3.1 光學干涉原理 15 2.3.2 光柵分類 18 2.3.3 透鏡陣列全息光學元件 19 2.4 積分成像技術 20 第三章 實驗材料與架構 24 3.1 實驗材料 24 3.2 樣品製作 27 3.2.1 液晶和光聚合單體的混合物調配 27 3.2.2 液晶和光聚合單體的混合物灌注 28 3.3 製作全息光學元件之實驗架構 29 3.3.1 製作全息光學元件之實驗儀器 29 3.3.2 製作全息光學元件之實驗裝置 31 3.4 投影式積分成像實驗架構 34 3.4.1 投影式積分成像之實驗設備 34 3.4.2 投影式積分成像之實驗裝置 35 第四章 實驗結果與討論 37 4.1 反射式光柵之繞射效率與材料和曝光參數的關係 37 4.2 透鏡陣列全息光學元件錄製 42 4.2.1 對稱曝光光路 43 4.2.2 非對稱曝光光路 47 4.3 建立投影式積分成像系統 49 4.3.1 投影式積分成像系統 49 4.3.2 使用電腦產生的影像單元 51 4.3.3 移除系統中的擴散片 53 4.4 聚合物分散液晶盒製作之透鏡陣列全息光學元件應用於投影式積分系統 54 4.5 聚合物分散液晶盒製作之透鏡陣列全息光學元件的光學性質研究 58 4.5.1 透鏡陣列全息光學元件的散射情形對還原影像的影響 58 4.5.2 還原影像的可視角範圍 63 4.6 以全息片錄製透鏡陣列全息光學元件 67 4.7 透鏡陣列全息光學元件的還原影像研究 73 第五章 結論與未來展望 76 5.1 結論 76 5.2 未來展望 78 參考資料 80

    [1] G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett., 41(11), 2486-2489 (2016)
    [2] S. Sagan, R. Smith, M. Popovich, “Electrically switchable Bragg grating technology for projection displays,” SPIE, 4292, 75-83 (2001)
    [3] D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948)
    [4] E. N. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am., 52, 1123 (1962)
    [5] J. W. Goodman,“ Introduction to Fourier Optics,” 3rd. Edition, Chap.9, Roberts& Company Publishers (2005)
    [6] K. Hong, J. Yeom, B. Lee, “Integral imaging using color multiplexed holographic optical element,” IEEE (2012)
    [7] R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533, (1993)
    [8] G. Li, D. Lee, Y. Jeong, J. Cho, B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element ,” Opt. Lett., 41(11), 2486-2489 (2016)
    [9] B. J. Jackin, L. Jorissen, R. Oi, J. Y. Wu, K. Wakunami, M. Okui, Y. Ichihashi, P. Bekaept, Y. P. Huang, K. Yamoto, “Digitally designed holographic optical element for light field displays ,” Opt. Lett., 43(15), 3738-3741 (2018)
    [10] H. Zhang, H. Deng, J. Li, M. He, D. Li, Q. Wang, “Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal,” Opt. Lett., 44(2), 387-390 (2019)
    [11] H. L. Zhang, H. Deng, W. T. Yu, M. Y. He, D. H. Li, Q. H. Wang, “Tabletop augmented reality 3D display system based on integral imaging,” JOSA. B 34(5) (2017)
    [12] K. Hong, J. Yeom, C. Jang, J. Hong, B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. lett., 30(1), 127-131 (2014)
    [13] 松本正一、角田市良,“液晶之基礎與應用” 第八版,第四章,國立編譯館,民國94年
    [14] Deng-Ke Yang, Shin-Tson Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 1, John Wiley & Sons (2006)
    [15] Toralf Scharf, “Polarized Ligh in Liquid Crystal and Polymers,”
    Chap. 6, John Wiley & Sons (2007)
    [16] Amnon Yariv, Pochi Yeh, “Optical Electronics in Modern Communications,” 6th. Edition, Chap. 1, Oxford University Press Inc. (2007)
    [17] Deng-Ke Yang, Shin-Tson Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 5, John Wiley & Sons (2006)
    [18] Deng-Ke Yang, Shin-Tson Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 11 , John Wiley & Sons (2006)
    [19] F. L. Pedrotti, “Introduction to Optics,” 3rd. Edition, Chap. 7, Addison Wesley (2007)
    [20] R. J. Collier, C.B. Burckhardt, L.H. Lin, “Optical Holography,” Academic Press New York and London (1971)
    [21] P. Yeh, “ Introduction to Photorefractive Nonlinear Optics, ” Wiley, New York (1993)
    [22] A. Semkin, S. Sharangovich, “Holographic Formation of Non-uniform Diffraction Structures by Arbitrary Polarized Recording Beams in Liquid Crystal-photopolymer Compositions,” Polymers, 11(5), 861 (2019)
    [23] R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, “Periodic Polymer-Dispersed Liquid Crystal Structures,” Mol. Cryst. Liq. Cryst. 358, 23 (2001)
    [24] Z. Yan, X. P. Yan, X. Y. Jiang, H. Gao, J. Wen, “Integral imaging based light field display with enhanced viewing resolution using holographic diffuser,” Opt. Comm. 402 (2017)
    [25] J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50, 34 (2011)
    [26] Ernst Lueder, “3D Displays,” Chap. 5, John Wiley & Sons (2012)
    [27] L. C. Khoo, “Liquid Crystals,” 2nd. Edition, Chap. 1, John Wiley & Sons (2007)
    [28] Y. H. Cho, B. K. Kim, and K. S. Park, “Optimization of holographic polymer dispersed liquid crystal for ternary monomers,” Polym. Int., 48, 1085-1090 (1999)
    [29] Spectra group Limited Inc., “H-Nu Blue 640, 660 Visible Light Photo initiators”
    [30] S. Park, B. S. Song, S. W. Min, “Analysis of Image Visibility in Projection-type Integral Imaging System without Diffuser ,” JOSK, 14(2), 121-126 (2010)
    [31] Liti Holographics Inc., “Litiholo 2.0 "Instant Hologram" Film Specifications”
    [32] R. A. Ramsey, “Holographic patterning of polymer dispersed liquid crystal materials for diffractive optical elements, PhD Thesis, The University of Texas at Arlington, USA (2006)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE