| 研究生: |
黃楷珞 Huang, Kai-Lou |
|---|---|
| 論文名稱: |
結合暗醱酵產氫及微藻養殖進行永續且零CO2排放之創新生物產氫系統開發 Developing a sustainable and CO2-free biohydrogen producing system via a novel integration of dark hydrogen fermentation and microalgae cultivation |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | Chlorella vulgaris 、Clostridium butyricum 、混營培養 、異營培養 、光自營培養 、二氧化碳固定 、暗發酵產氫 、系統整合 |
| 外文關鍵詞: | Chlorella vulgaris, Clostridium butyricum, mixotrophic cultivation, heterotrophic, phototrophic, CO2 fixation, dark fermentation, process integration |
| 相關次數: | 點閱:188 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球暖化和能源日益減少,尋找新的替代能源是全球熱門的議題。生質燃料,是指利用生物質經轉換所獲得能源(如生質酒精、生質柴油和生質氫氣)漸漸被受重視。近年來第三代生質料源 – 微藻逐漸受到重視,以微藻生產生質能儼然成為未來的新趨勢。本研究企圖將微藻系統串連暗發酵產氫系統,以微藻Chlorella vulgaris JSC-6吸收發酵產氫之產物二氧化碳及放流水中之揮發酸 (乙酸及丁酸) 進行零CO2排放與去除暗發酵液COD之目的,達到自給自足且零碳排放量之生質氫能系統。
首先,探討微藻在不同系統(光自營,異營以及混營)中,針對吸收CO2及有機酸和累積碳水化合物之效率進行研究,分別對環境因子如pH值,CO2曝氣速率以及有機酸的濃度進行微藻培養,使之能在後端有效的利用Clostridium butyricum CGS5在產氫過程中所排放之代謝產物。實驗結果顯示,此微藻在混營系統下,pH控制為7.5,曝氣速率為5x10-3 vvm以及乙酸與丁酸濃度分別為0.3 g/L和0.8 g/L的條件下,微藻能夠將放流水中的揮發酸(乙酸及丁酸)和氣相中之CO2完全利用,並產生能累積碳水化合物之微藻生物質,以利於後續利用。
此外,過去研究指出,水溶液中過高的HCO3-濃度會抑制Chlorella vulgaris JSC-6的生長,然而在暗醱酵液中則含有大量作為緩衝溶液的NaHCO3。為使微藻在利用暗發酵液時不受到HCO3-濃度的抑制,本研究移除在發酵產氫培養基中之NaHCO3。結果顯示,Clostridium butyricum CGS5在不添加緩衝液NaHCO3仍能夠繼續生長並進行產氫,其最大產氫速率為189 ml/h/L,產率為3.23 mol H2/mol Sucrose。另一方面,本研究亦將含高碳水化合物之微藻biomass做為發酵產氫之料源,並探討微藻biomass經不同的前處理方式進行水解並醱酵產氫之最佳條件。結果發現,Chlorella vulgaris JSC-6 以商業化酵素進行水解時,可達到100%的還原糖轉化率與80%的單糖轉化率,其累積產氫量為1407 ml/L,而氫氣產率為43.44 mmol/g alga。
最後,本研究利用連續流方式將微藻以混營培養系統串聯暗發酵產氫系統進行生物產氫。在此實驗中當發酵之HRT為16 h時,其產氫速率為350 ml/L/h,且其出流水與排放氣體皆與微藻系統結合,透過微藻系統進行混營培養,而微藻在HRT為6天時,可完全將CO2和出流液中的揮發酸100%降解,而產生的藻體其碳水化合物含量也可達65%,並可進行連續式微藻生長。因此,本研究成功地將發酵產氫與微藻系統進行串接整合且達到半連續流裝置,不但可以使CO2達到零排放之目的及去除發酵液中的COD,並能連續生產發酵所需之藻體料源,達到零碳排放能源生產及永續利用之目的。
In light of the crisis of global warming and energy deficiency, finding alternative renewable energy resources for human sustainability is one of the most important global issues at present. Biofuels (e.g., alcohols, biodiesel, or biogas) derived from biomass have caught increasing attention. In particular, using microalgae biomass as the third generation feedstock for biofuels production has become a new trend. In this study, we focused on developing a novel biohydrogen (a no-carbon fuel) technology by integrating dark hydrogen fermentation and mixotrophic microalgae growth to create a CO2-free self-sustainable biohydrogen system.
Our previous study focused on selecting a microalgae cultivation system (photoautotrophic, heterotrophic and mixotrophic) that could be used to grow microalgae to achieve a maximum efficiency of CO2 fixation, COD removal and carbohydrate accumulation. To improve the consumption rate of the metabolites coming from dark hydrogen fermentation process using Clostridium butyricum CGS5 as the bioH2 producer, the primary factors affecting the growth of the microalgae, such as pH, CO2 feeding rate and organic acid loading, were investigated. The results show that the optimal pH, CO2 feeding rate and organic acid loading were 7.5, 0.5 ml/min and 1/6X diluted fermentation effluent, respectively. The isolated microalga Chlorella vulgaris JSC-6 can grow efficiently on the liquid (acetate or butyrate) and gaseous (CO2) metabolites from dark fermentation under mixotrophic conditions and accumulates high carbohydrate content in its biomass.
Moreover, our previous study showed that C. vulgaris JSC-6 was inhibited by an excess concentration of HCO3-. However, a high concentration of NaHCO3 is present in the liquid effluent of dark H2 fermentation since it was used as the buffer in the dark fermentation medium. To avoid the inhibition of NaHCO3 to the microalgae growth, the NaHCO3 component was excluded from the fermentation medium. The results show that the Cl. butyricum CGS5 could still produce biohydrogen efficiently on the NaHCO3–free medium, obtaining a maximum H2 production of 189 ml/L/min and a yield of 3.23 mol/mol.
On the other hand, the carbohydrate-rich microalgae biomass was also used as the carbon source to produce bio-hydrogen via dark fermentation. The results show that the microalgal biomass could be effectively hydrolyzed by commercial enzyme to achieve a sugar conversion of 87%. The microalgae hydrolysate was used to produce H2 by Cl. butyricum CGS5, giving a maximum cumulative H2 production of 1407 ml/L and a yield of 43.44 mmol/g alga.
Dark fermentation and microalgae culture were integrated under the optimal conditions. The results show that H2 productivity of dark fermentation at a hydraulic retention time (HRT) of 16 h was 350 ml/L/h. C. vulgaris JSC-6 can efficiently utilize the soluble metabolites and completely remove CO2 from the gas effluent of dark fermentation for mixotrophic growth. The carbohydrate content of the yielded microalgal biomass can reach up to 65%, it suitable to serve as feedstock for dark hydrogen fermentation. This study successfully demonstrated the feasibility of integration of dark H2 fermentation and mixotrophic growth of microalgae under cyclic semi-continuous operations. This novel process was able to produce hydrogen without CO2 emissions with a significant COD reduction of the dark fermentation effluent and a production of microalgal biomass as self-sustainable feedstock.
Abreu, A. P., Fernandes, B., Vicente, A. A., Teixeira, J. and Dragone, G. Mixotrophic Cultivation of Chlorella Vulgaris Using Industrial Dairy Waste as Organic Carbon Source. Bioresource technology. 118:61-66. 2012.
Alvira, P., Tomás-Pejó, E., Ballesteros, M. and Negro, M. J. Pretreatment Technologies for an Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis: A Review. Bioresource technology. 101:4851-4861. 2010.
Aslan, S. and Kapdan, I. K. Batch Kinetics of Nitrogen and Phosphorus Removal from Synthetic Wastewater by Algae. Ecological Engineering. 28:64-70. 2006.
Aziz, M. A. and Ng, W. J. Feasibility of Wastewater Treatment Using the Activated-Algae Process. Bioresource technology. 40:205-208. 1992.
Balat, M. Potential Importance of Hydrogen as a Future Solution to Environmental and Transportation Problems. International Journal of Hydrogen Energy. 33:4013-4029. 2008.
Beer, L. L., Boyd, E. S., Peters, J. W. and Posewitz, M. C. Engineering Algae for Biohydrogen and Biofuel Production. Current opinion in biotechnology. 20:264-271. 2009.
Behrens, P. W., Bingham, S. E., Hoeksema, S. D., Cohoon, D. L. and Cox, J. C. Studies on the Incorporation of Co2 into Starch by Chlorella Vulgaris. Journal of applied phycology. 1:123-130. 1989.
Bhatnagar, A., Chinnasamy, S., Singh, M. and Das, K. C. Renewable Biomass Production by Mixotrophic Algae in the Presence of Various Carbon Sources and Wastewaters. Applied Energy. 88:3425-3431. 2011.
Borowitzka, M. A. Commercial Production of Microalgae: Ponds, Tanks, and Fermenters. Progress in industrial microbiology. 35:313-321. 1999.
Brennan, L. and Owende, P. Biofuels from Microalgae—a Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products. Renewable and sustainable energy reviews. 14:557-577. 2010.
Chang, C. Y., An Innovative Biohydrogen Production System Integration Dark Fermentation Process and Mixotrophic Growth of Microalgae, National Cheng Kung University, 2012.
Chen, C. Y., Yang, M. H., Yeh, K. L., Liu, C. H. and Chang, J. S. Biohydrogen Production Using Sequential Two-Stage Dark and Photo Fermentation Processes. International Journal of Hydrogen Energy. 33:4755-4762. 2008.
Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. L., Bai, F. W. and Chang, J. S. Microalgae-Based Carbohydrates for Biofuel Production. Biochemical engineering journal. 78:1-10. 2013.
Chen, F. and Johns, M. R. A Strategy for High Cell Density Culture of Heterotrophic Microalgae with Inhibitory Substrates. Journal of applied phycology. 7:43-46. 1995.
Chen, M., Zhao, J. and Xia, L. Enzymatic Hydrolysis of Maize Straw Polysaccharides for the Production of Reducing Sugars. Carbohydrate Polymers. 71:411-415. 2008.
Chisti, Y. Biodiesel from Microalgae. Biotechnology advances. 25:294-306. 2007.
Collos, Y., Mornet, F., Sciandra, A., Waser, N., Larson, A. and Harrison, P. J. An Optical Method for the Rapid Measurement of Micromolar Concentrations of Nitrate in Marine Phytoplankton Cultures. Journal of Applied Phycology. 11:179-184. 1999.
Das, D. and Veziroglu, T. N. Hydrogen Production by Biological Processes: A Survey of Literature. International Journal of Hydrogen Energy. 26:13-28. 2001.
Dasgupta, C. N., Jose Gilbert, J., Lindblad, P., Heidorn, T., Borgvang, S. A., Skjanes, K. and Das, D. Recent Trends on the Development of Photobiological Processes and Photobioreactors for the Improvement of Hydrogen Production. International journal of hydrogen energy. 35:10218-10238. 2010.
Demirbas, A. Use of Algae as Biofuel Sources. Energy conversion and management. 51:2738-2749. 2010.
Eriksen, N. T., Riisgård, F. K., Gunther, W. S. and Iversen, J. J. L. On-Line Estimation of O2 Production, Co2 Uptake, and Growth Kinetics of Microalgal Cultures in a Gas-Tight Photobioreactor. Journal of applied phycology. 19:161-174. 2007.
Fallowfield, H. J. and Garrett, M. K. The Photosynthetic Treatment of Pig Slurry in Temperate Climatic Conditions: A Pilot-Plant Study. Agricultural wastes. 12:111-136. 1985.
Goldman, J. C., Azov, Y., Riley, C. B. and Dennett, M. R. The Effect of Ph in Intensive Microalgal Cultures. I. Biomass Regulation. Journal of experimental marine biology and ecology. 57:1-13. 1982a.
Goldman, J. C., Riley, C. B. and Dennett, M. R. The Effect of Ph in Intensive Microalgal Cultures. Ii. Species Competition. Journal of experimental marine biology and ecology. 57:15-24. 1982b.
Graham, D. and Whittingham, C. P. The Path of Carbon During Photosynthesis in Chlorella Pyrenoidosa at High and Low Carbon Dioxide Concentrations. Z. Pflanzenphysiol. 58:1. 1968.
Groom, M. J., Gray, E. M. and Townsend, P. A. Biofuels and Biodiversity: Principles for Creating Better Policies for Biofuel Production. Conservation biology. 22:602-609. 2008.
Guidoboni, G. E. Continuous Fermentation Systems for Alcohol Production. Enzyme and microbial technology. 6:194-200. 1984.
Hallenbeck, P. C. and Benemann, J. R. Biological Hydrogen Production; Fundamentals and Limiting Processes. International Journal of Hydrogen Energy. 27:1185-1193. 2002.
Harun, R. and Danquah, M. K. Influence of Acid Pre-Treatment on Microalgal Biomass for Bioethanol Production. Process Biochemistry. 46:304-309. 2011.
Hawkes, F. R., Dinsdale, R., Hawkes, D. L. and Hussy, I. Sustainable Fermentative Hydrogen Production: Challenges for Process Optimisation. International Journal of Hydrogen Energy. 27:1339-1347. 2002.
Ho, S. H., Chen, C. Y. and Chang, J. S. Effect of Light Intensity and Nitrogen Starvation on Co2 Fixation and Lipid/Carbohydrate Production of an Indigenous Microalga Scenedesmus Obliquus Cnw-N. Bioresource technology. 113:244-252. 2012.
Ip, P. F., Wong, K. H. and Chen, F. Enhanced Production of Astaxanthin by the Green Microalga Chlorella Zofingiensis in Mixotrophic Culture. Process biochemistry. 39:1761-1766. 2004.
Iverson, T. M. Evolution and Unique Bioenergetic Mechanisms in Oxygenic Photosynthesis. Current opinion in chemical biology. 10:91-100. 2006.
Keffer, J. E. and Kleinheinz, G. T. Use of Chlorella Vulgaris for Co2 Mitigation in a Photobioreactor. Journal of Industrial Microbiology and Biotechnology. 29:275-280. 2002.
Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F. X. and Van Langenhove, H. Enhanced Co2 Fixation and Biofuel Production Via Microalgae: Recent Developments and Future Directions. Trends in biotechnology. 28:371-380. 2010.
Kumar, N. A. and Das, D. Continuous Hydrogen Production by Immobilized Enterobacter Cloacae Iit-Bt 08 Using Lignocellulosic Materials as Solid Matrices. Enzyme and Microbial Technology. 29:280-287. 2001.
Li, Y., Han, D., Sommerfeld, M. and Hu, Q. Photosynthetic Carbon Partitioning and Lipid Production in the Oleaginous Microalga Pseudochlorococcum Sp.(Chlorophyceae) under Nitrogen-Limited Conditions. Bioresource technology. 102:123-129. 2011.
Liang, Y., Sarkany, N. and Cui, Y. Biomass and Lipid Productivities of Chlorella Vulgaris under Autotrophic, Heterotrophic and Mixotrophic Growth Conditions. Biotechnology letters. 31:1043-1049. 2009.
Lo, Y. C., Chen, S. D., Chen, C. Y., Huang, T. I., Lin, C. Y. and Chang, J. S. Combining Enzymatic Hydrolysis and Dark–Photo Fermentation Processes for Hydrogen Production from Starch Feedstock: A Feasibility Study. International Journal of Hydrogen Energy. 33:5224-5233. 2008.
Markou, G., Angelidaki, I. and Georgakakis, D. Microalgal Carbohydrates: An Overview of the Factors Influencing Carbohydrates Production, and of Main Bioconversion Technologies for Production of Biofuels. Applied microbiology and biotechnology. 96:631-645. 2012.
Mata, T. M., Martins, A. A. and Caetano, N. S. Microalgae for Biodiesel Production and Other Applications: A Review. Renewable and Sustainable Energy Reviews. 14:217-232. 2010.
McGriff Jr, E. C. and McKinney, R. E. The Removal of Nutrients and Organics by Activated Algae. Water research. 6:1155-1164. 1972.
McKendry, P. Energy Production from Biomass (Part 1): Overview of Biomass. Bioresource technology. 83:37-46. 2002.
Meher Kotay, S. and Das, D. Biohydrogen as a Renewable Energy Resource—Prospects and Potentials. International Journal of Hydrogen Energy. 33:258-263. 2008.
Melis, A. and Happe, T. Hydrogen Production. Green Algae as a Source of Energy. Plant physiology. 127:740-748. 2001.
Metting Jr, F. B. Biodiversity and Application of Microalgae. Journal of industrial microbiology. 17:477-489. 1996.
Miao, X. and Wu, Q. Biodiesel Production from Heterotrophic Microalgal Oil. Bioresource technology. 97:841-846. 2006.
Mirón, A. S., Garcı́a, M., Gómez, A. C., Camacho, F. G., Grima, E. M. and Chisti, Y. Shear Stress Tolerance and Biochemical Characterization of Phaeodactylum Tricornutum in Quasi Steady-State Continuous Culture in Outdoor Photobioreactors. Biochemical Engineering Journal. 16:287-297. 2003.
Miranda, J. R., Passarinho, P. C. and Gouveia, L. Pre-Treatment Optimization of Scenedesmus Obliquus Microalga for Bioethanol Production. Bioresource technology. 104:342-348. 2012.
Miyachi, S., Iwasaki, I. and Shiraiwa, Y. Historical Perspective on Microalgal and Cyanobacterial Acclimation to Low-and Extremely High-Co2 Conditions. Photosynthesis research. 77:139-153. 2003.
Momirlan, M. and Veziroglu, T. Recent Directions of World Hydrogen Production. Renewable & Sustainable Energy Reviews. 3:219-231. 1999.
Mussatto, S. I., Dragone, G., Guimarães, P. M., Silva, J. P. A., Carneiro, L. M., Roberto, I. C., Vicente, A. A., Domingues, L. and Teixeira, J. A. Technological Trends, Global Market, and Challenges of Bio-Ethanol Production. Biotechnology advances. 28:817-830. 2010.
Nath, K. and Das, D. Improvement of Fermentative Hydrogen Production: Various Approaches. Applied microbiology and biotechnology. 65:520-529. 2004.
Nelson, D. L., Lehninger, A. L. and Cox, M. M. Lehninger Principles of Biochemistry. Macmillan. 2008.
Ni, M., Leung, D. Y. and Leung, M. H. A Review on Reforming Bio-Ethanol for Hydrogen Production. International Journal of Hydrogen Energy. 32:3238-3247. 2007.
Perez-Garcia, O., Escalante, F. M., de-Bashan, L. E. and Bashan, Y. Heterotrophic Cultures of Microalgae: Metabolism and Potential Products. Water research. 45:11-36. 2011.
Pittman, J. K., Dean, A. P. and Osundeko, O. The Potential of Sustainable Algal Biofuel Production Using Wastewater Resources. Bioresource technology. 102:17-25. 2011.
Pouliot, Y., Buelna, G., Racine, C. and De la Noüe, J. Culture of Cyanobacteria for Tertiary Wastewater Treatment and Biomass Production. Biological wastes. 29:81-91. 1989.
Pulz, O. and Gross, W. Valuable Products from Biotechnology of Microalgae. Applied microbiology and biotechnology. 65:635-648. 2004.
Qiang, H., Zarmi, Y. and Richmond, A. Combined Effects of Light Intensity, Light-Path and Culture Density on Output Rate of Spirulina Platensis (Cyanobacteria). European Journal of Phycology. 33:165-171. 1998.
Rabelo, S. C., Maciel Filho, R. and Costa, A. C. Lime Pretreatment of Sugarcane Bagasse for Bioethanol Production. Applied Biochemistry and Biotechnology. 153:139-150. 2009.
Radakovits, R., Jinkerson, R. E., Darzins, A. and Posewitz, M. C. Genetic Engineering of Algae for Enhanced Biofuel Production. Eukaryotic Cell. 9:486-501. 2010.
Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S. and Rengasamy, R. A Perspective on the Biotechnological Potential of Microalgae. Critical reviews in microbiology. 34:77-88. 2008.
Rawat, I., Ranjith Kumar, R., Mutanda, T. and Bux, F. Dual Role of Microalgae: Phycoremediation of Domestic Wastewater and Biomass Production for Sustainable Biofuels Production. Applied Energy. 88:3411-3424. 2011.
Richardson, B., Orcutt, D. M., Schwertner, H. A., Martinez, C. L. and Wickline, H. E. Effects of Nitrogen Limitation on the Growth and Composition of Unicellular Algae in Continuous Culture. Applied microbiology. 18:245-250. 1969.
Richmond, A. Microalgal Biotechnology at the Turn of the Millennium: A Personal View. Journal of Applied Phycology. 12:441-451. 2000.
Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O. and Hankamer, B. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. Bioenergy research. 1:20-43. 2008.
Shi, X. M., Liu, H. J., Zhang, X. W. and Chen, F. Production of Biomass and Lutein by Chlorella Protothecoides at Various Glucose Concentrations in Heterotrophic Cultures. Process biochemistry. 34:341-347. 1999.
Shoko, E., McLellan, B., Dicks, A. L. and da Costa, J. C. D. Hydrogen from Coal: Production and Utilisation Technologies. International Journal of Coal Geology. 65:213-222. 2006.
Silva-Benavides, A. M. and Torzillo, G. Nitrogen and Phosphorus Removal through Laboratory Batch Cultures of Microalga Chlorella Vulgaris and Cyanobacterium Planktothrix Isothrix Grown as Monoalgal and as Co-Cultures. Journal of Applied Phycology. 24:267-276. 2012.
Singh, J. and Gu, S. Commercialization Potential of Microalgae for Biofuels Production. Renewable and Sustainable Energy Reviews. 14:2596-2610. 2010.
Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. Commercial Applications of Microalgae. Journal of bioscience and bioengineering. 101:87-96. 2006.
Stiegel, G. J. and Ramezan, M. Hydrogen from Coal Gasification: An Economical Pathway to a Sustainable Energy Future. International Journal of Coal Geology. 65:173-190. 2006.
Sun, Y. and Cheng, J. Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. Bioresource technology. 83:1-11. 2002.
Sydney, E. B., Sturm, W., de Carvalho, J. C., Thomaz-Soccol, V., Larroche, C., Pandey, A. and Soccol, C. R. Potential Carbon Dioxide Fixation by Industrially Important Microalgae. Bioresource technology. 101:5892-5896. 2010.
Tam, N. F. Y. and Wong, Y. S. Wastewater Nutrient Removal by Chlorella Pyrenoidosa and Scenedesmus Sp. Environmental Pollution. 58:19-34. 1989.
Tao, Y., Chen, Y., Wu, Y., He, Y. and Zhou, Z. High Hydrogen Yield from a Two-Step Process of Dark-and Photo-Fermentation of Sucrose. International Journal of Hydrogen Energy. 32:200-206. 2007.
Taraldsvik, M. and Myklestad, S. The Effect of Ph on Growth Rate, Biochemical Composition and Extracellular Carbohydrate Production of the Marine Diatom Skeletonema Costatum. European Journal of Phycology. 35:189-194. 2000.
Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I. and Garland, C. D. Fatty Acid and Lipid Composition of 10 Species of Microalgae Used in Mariculture. Journal of Experimental Marine Biology and Ecology. 128:219-240. 1989.
Wang, B., Li, Y., Wu, N. and Lan, C. Q. Co2 Bio-Mitigation Using Microalgae. Applied Microbiology and Biotechnology. 79:707-718. 2008.
Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y. and Ruan, R. Cultivation of Green Algae Chlorella Sp. In Different Wastewaters from Municipal Wastewater Treatment Plant. Applied biochemistry and biotechnology. 162:1174-1186. 2010.
Zhang, H., Lin, G. and Chen, J. Evaluation and Calculation on the Efficiency of a Water Electrolysis System for Hydrogen Production. international journal of hydrogen energy. 35:10851-10858. 2010.
Zhu, X. G., Alba, R. and de Sturler, E. A Simple Model of the Calvin Cycle Has Only One Physiologically Feasible Steady State under the Same External Conditions. Nonlinear Analysis: Real World Applications. 10:1490-1499. 2009.
校內:2024-01-01公開