簡易檢索 / 詳目顯示

研究生: 洪佳琦
Hung, Chia-Chi
論文名稱: 以數學規劃方法求解概念圖為基礎之多準則合作學習分組問題研究
Mathematical programming approaches to composing multi-criteria cooperative learning groups based on conceptual maps
指導教授: 王逸琳
Wang, I-Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 99
中文關鍵詞: 合作學習分組策略概念圖整數規劃基因演算法
外文關鍵詞: Cooperative learning, Grouping strategies, Conceptual graph, Integer programming, Genetic Algorithm
相關次數: 點閱:93下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 合作學習為一種有效之學習方式,而如何將學生分成多個結構優良的合作小組則為合作學習的一個重要議題。由於概念圖可以用來顯現與組織學生學習的知識架構,透過此工具更可以了解各個學生的學習狀況,而小組成員的各個概念之學習狀況越是互補,其學習進步的空間將越大,因此本研究以個人的概念圖為基礎,由知識架構方面更詳細地制定一套可評估小組成員間概念互補情形的計算方式,並由整體成員的互補程度、概念結構的互補情形、小組間公平性等面向,提出數種分組策略。
    本研究以作業研究領域中之整數規劃技巧針對各分組策略加以模式化,並由分組問題中常見的兩種角度提出數學模式Ⅰ與數學模式Ⅱ以求出最佳的分組方式。其中,模式Ⅰ直接以決策變數來決定學生i是否與學生j同組;而模式Ⅱ則以學生i是否屬於第r組之變數來間接判斷學生i是否與學生j同組。此外,為更符合使用者使用的需求,我們提出透過整數規劃中不同的目標式與限制式搭配求解的想法,以增加使用者選擇彈性,並更進一步說明如何將文獻中提及之各類分組因素轉換成本研究提出之整數規劃數學模型,以及解釋如何應用所提之分組規則以讓使用者可更彈性地運用各種分組策略。
    為能更快速地分組,我們亦提出一個改良式的基因演算法機制,以在各種情境中找出一組可行解,此外,我們亦針對最常使用之分組情境提出一貪婪式演算法,經測試比較後發現,此改良式基因演算法能在合理的時限內找出求解品質不錯的分組方式,且其求解的穩定性亦優於貪婪式演算法。

    Cooperative learning is a useful way for learning, whereas how to divide learners into adaptive groups becomes an important issue. In this study, we use the conceptual maps to evaluate the learning performance for each student and propose a mechanism to gauge the conceptual complementarities between two individuals. We then set several grouping strategies based on complementary scores, coverage of concepts and fairness between groups.
    We propose two mathematical models based on integer programming (IP) formulations by different grouping strategies. We illustrate our grouping mechanisms by examples and show how previous group composition strategies can be integrated into our proposed grouping mathematical models.
    To effectively grouping students within short period of time, we propose a genetic algorithm (GA) and a greedy algorithm (GREEDY) and compare their performances with the formulations solved by a state-of-the-art IP solver. The test results indicate GA and GREEDY can efficiently deal with larger problems, and GA is more robust with better performance than GREEDY.

    摘要 i ABSTRACT ii 誌謝 iii 表目錄 vi 圖目錄 viii 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的 3 1.3論文架構 4 第二章 文獻探討 5 2.1 合作學習之相關文獻 5 2.1.1 合作學習之發展現況 5 2.1.2 合作學習之分組理論 7 2.1.3 電腦輔助合作學習分組之現況 10 2.2 概念圖 10 2.3 概念影響關係模式 13 2.4 基因演算法 17 2.5 小結 19 第三章 分組策略與整數規劃之模式建構 20 3.1 問題假設 20 3.2 分組策略 21 3.2.1 概念互補分數計算方式 21 3.2.1.1 計算方式之架構與步驟 22 3.2.1.2 利用深度優先搜尋法(DFS)實作之說明 23 3.2.1.3 時間複雜度之估算 25 3.2.2 分組規則 26 3.3 整數規劃模式Ⅰ之建構 27 3.3.1 考量概念互補程度分組策略之整數規劃模式Ⅰ 29 3.3.2 考量公平性分組策略之整數規劃模式Ⅰ 31 3.3.3 整數規劃模式Ⅰ之基本限制式 33 3.4 整數規劃模式Ⅱ之建構 34 3.4.1 考量概念互補程度分組策略之整數規劃模式Ⅱ 36 3.4.2 考量公平性分組策略之整數規劃模式Ⅱ 37 3.4.3 整數規劃模式Ⅱ之基本限制式 39 3.5 整數規劃模式Ⅰ與模式Ⅱ複雜度之比較 40 3.6 權重設定 42 3.7 其他分組因素轉換於此整數規劃模式之說明 43 3.8 分組系統之構想與描述 45 3.9 範例說明 48 3.10 小結 51 第四章 以演算法求解合作學習分組問題 53 4.1 改良式基因演算法之建立與說明 53 4.1.1 染色體之編碼方式 53 4.1.2 適應函式 55 4.1.3 選擇策略 59 4.1.4 交配策略 59 4.1.5 突變策略 61 4.2 改良式基因演算法之範例說明 62 4.3 貪婪式演算法之建立與說明 65 4.4 貪婪式演算法之範例說明 69 第五章 數值分析 72 5.1 測試情境 72 5.2 整數規劃模型數值分析 74 5.3 改良式基因演算法數值分析 77 5.3.1 改良式基因演算法參數設定 77 5.3.2 分析改良式基因演算法求解情形 79 5.4 改良式基因演算法與貪婪式演算法之比較 83 5.5 小結 85 第六章 結論與未來研究方向 87 6.1 論文總結與貢獻 87 6.2 未來研究方向 90 6.2.1研究方法之效率與效能改善 90 6.2.2其他延伸性發展方向 91 參考文獻 93 附錄A 98

    中文部份:
    余民寧(1997),有意義的學習:概念構圖之研究,商鼎文化出版社。
    黃政傑,吳俊憲(2006),合作學習發展與實踐,五南文化出版公司。

    英文部份:
    Abrami, P. C., Chambers, B., Poulsen, C., De Simone, C., d'Apollonia, S., & Howden, J. (1995). Classroom connections:understanding and using cooperative learning. Toronto: Harcourt Brace & Company.
    Chu, H. C., Hwang, G. J., Tseng, J. C. R., & Hwang, G. H. (2006). A computerized approach to diagnosing student learning problems in health education. Asian Journal of Health and Information Sciences, 1(1), 43-60.
    De Jong, K. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD Dissertation, Department of Computer and Communication Sciences, University of Michigan, Ann Arbor
    Dembo, M. H. (1994). Applying educational psychology. N.Y.: Longnan.
    Goldberg, D.E., (1989). Genetic algorithm in search, optimization and machine learning. Addition-Wesley, Reading, Massachusetts.
    Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 16, 122–128.
    Hallinan, M. T., & Sørensen, A. B. (1985). Ability grouping and student friendships. American Educational Research Journal, 22(4), 485-499.
    Holland, J.H. (1975). Adaption in natural and artificial system., Univ. of Michigan Press.
    Hooper, S., & Hannafin, M. J. (1988). Cooperative CBI - the effects of heterogeneous versus homogeneous grouping on the learning of prpgressively complex concepts. Journal of Educational Computing Research, 4(4), 413-424.
    Hsu, C. S., Tu, S. F., & Hwang, G. J. (1998). A concept inheritance method for learning diagnosis of a network-based testing and evaluation system. Paper presented at the In The 7th International Conference on Computer Assisted Instructions.
    Hwang, G.-J. (2003). A conceptual map model for developing intelligent tutoring systems. Computers & Education, 40(3), 217-235.
    Hwang, G. J. (2005). A data mining algorithm for diagnosing student learning problems in science courses. International Journal of Distance Education Technology, 3(4), 35-50.
    Hwang, G. J., Hsiao, J. L., & Tseng, J. C. R. (2003). A computer-Assisted approach for diagnosing student learning problems in science courses. Journal of Information Science and Engineering, 19(2), 229-248.
    Hwang, G. J., Tsai, P. J., Tseng, J. C. R., & Hwang, G. H. (2008). A computer-assisted approach to conducting cooperative learning process. Journal of Distance Education Technology, 6(1), 49-66.
    Hwang, G. J., Tseng, J. C. R., & Hwang, G. H. (2008). Diagnosing student learning problems based on historical assessment records. Innovations in Education and Teaching International, 45(1), 77-89.
    Hwang, G. J., Yin, P. Y., Hwang, C. W., & Tsai, C. C. (2008). An enhanced genetic approach to composing cooperative learning groups for multiple grouping criteria. Educational Technology & Society, 11(1), 148-167.
    Johnson, D. W., & Johnson, R. T. (1975). Learning together and alone:cooperation,competition,and individualization. N.J.: Prentice-Hall.
    Johnson, D. W., & Johnson, R. T. (1978). Cooperative,competitive and individualistic learning. Journal of Research and Development in Education, 12, 3-15.
    Johnson, D. W., & Johnson, R. T. (1984). Structuring groups for cooperative learning Journal of Management Education 9(8), 8-17.
    Jong, B. S., Wu, Y. L., & Chan, T. Y. (2006). Dynamic grouping strategies based on a conceptual graph for cooperative learning. Ieee Transactions on Knowledge and Data Engineering, 18(6), 738-747.
    Lee, C. H., Lee, G. G., & Leu, Y. H. (2009). Application of automatically constructed concept map of learning to conceptual diagnosis of e-learning. Expert Systems with Applications, 36(2), 1675-1684.
    Logan, T. F. (1986). Cooperative learning: a view from the inside. Social Studies, 77(3), 123-126.
    Lou, Y. P., Abrami, P. C., Spence, J. C., Poulsen, C., Chambers, B., & dApollonia, S. (1996). Within-class grouping: A meta-analysis. Review of Educational Research, 66(4), 423-458.
    Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. . NY: Cambridge University Press.
    Schaffer, J.D., Caruana, R.A., Eshelman, L. J., & Das, R. (1989). A study of control parameters affecting online performance of genetic algorithms for function optimization. In J.D. Schaffer, (ed.) Proceedings of the Third International Conference on Genetic Algorithms (pp. 51–60). San Mateo, CA: Morgan Kaufmann.
    Shavelson, R. J., Webb, N. M., & Rowley, G. L. (1989). Generalizability theory. American Psychologist, 44(6), 922-932.
    Slavin, R. E. (1990). Research on cooperative learning - consensus and controversy. Educational Leadership, 47(4), 52-54.
    Slavin, R. E. (1995). Cooperative learning:theory,research,and practice. Boston: Allyn and Bacon.
    Slavin, R. E., & Cooper, R. (1999). Improving intergroup relations: Lessons learned from cooperative learning programs. Journal of Social Issues, 55(4), 647-663.
    Smith, K. A. (1996). Cooperative learning: making "groupwork" work. New Directions for Teaching and Learning, 67, 71-82.
    Solso, R. L. (1995). Images of mind - a window to the brain. Behavioral and Brain Sciences, 18(2), 371-372.
    Sun, C. T., & Chou, C. (1996). Experiencing CORAL: design and implementation of distance cooperative learning. IEEE Transactions on Education, 39(3), 357–366.
    Vinod, H. (1969). Integer programming and the theory of grouping. J. Amer. Statist. Assoc., 64,506–517.
    Wang, D.-Y., Lin, S. S. J., & Sun, C.-T. (2007). DIANA: A computer-supported heterogeneous grouping system for teachers to conduct successful small learning groups. Computers in Human Behavior, 23(4), 1997-2010.
    Webb, N. M. (1982a). Group composition, group-interaction, and achievement in cooperative small-groups. Journal of Educational Psychology, 74(4), 475-484.
    Webb, N. M. (1982b). Peer interaction and learning in cooperative small groups. Journal of Educational Psychology, 74(5), 642-655.
    Webb, N. M. (1984). Stability of small-group interaction and achievement over time. Journal of Educational Psychology, 76(2), 211-224.
    Webb, N. M. (1991). Task-related verbal interactionI and mathematics learning in samll-groups Journal for Research in Mathematics Education, 22(5), 366-389.
    Webb, N. M., & Cullian, L. K. (1983). Group-interaction and achievement in small-groups - stability over time. American Educational Research Journal, 20(3), 411-423.

    下載圖示 校內:2014-07-19公開
    校外:2014-07-19公開
    QR CODE