| 研究生: |
胡欣成 Hu, Shin-Chen |
|---|---|
| 論文名稱: |
基於被動與事件驅動在網路不確定性下之雙向遠端遙控系統 Passivity-Based and Event-Triggered Bilateral Teleoperation Systems with Network Uncertainties |
| 指導教授: |
劉彥辰
Liu, Yen-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 雙向遠端遙控系統 、Lyapunov穩定性 、時間延遲 、網路壅塞 、封包遺失 、波函數 、力回饋 、事件觸發 |
| 外文關鍵詞: | Bilateral teleoperation, Lyapunov, Time delays, Network congestions, Packet loss, Wave-variable, Force feedback |
| 相關次數: | 點閱:199 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對雙向遠端遙控系統之網路不確定性問題提出因應架構。在雙向遠端遙控系統中各機器人藉由通訊網路將位置與速度等狀態輸出给彼此之控制器,因此控制器藉由收到之訊號與本地機器人狀態產生控制輸出。進行傳輸之通訊網路可能遭逢不確定性影響,包括時變時間延遲、固定時間延遲、封包遺失等,此導因於傳輸的距離或是硬體計算的限制,甚至是網路負擔過大等問題。
此處因應網路不確定性所設計之架構可分為:固定時間延遲與封包遺失下使用波函數轉換(Wave-Variable Transformation)與波函數調變(Wave-Variable Modulation)之架構、固定時間延遲下因應網路擁塞使用事件觸發傳輸機制(Event-Triggered)與波函數轉換之架構、固定時間延遲下使用P-或PD-based之控制器並加入事件觸發傳輸機制。事件觸發傳輸機制主要希望可減少網路負擔以減少壅塞現象。論文中所提出的架構使用Lyapunov穩定性方法分析以獲得系統在網路不確定性影響下之相應的穩定性條件,並確保系統追蹤效能。除穩定性外,本論文針對使用P-與PD-based的控制架構,提供了雙向遠端遙控系統在穩態時受遠端環境力時力矩回饋的證明,即能保證力量回饋的效果。
所提出的架構首先將以數學理論作分析,再將其模擬並以實驗驗證,以討論其差異。力量回饋在雙向遠端遙控系統中十分受到重視,因此本論文在實驗中使用力量感測器對兩邊機械手臂所受外力矩量測並記錄比較。實驗結果驗證所提出之架構在網路不確定性下能獲得穩定的追蹤效能,並且存在力回饋的機制或趨勢。
In this thesis, control structures are proposed to deal with network uncertainties such as packet loss, constant delays, and network congestion in bilateral teleoperation. In bilateral teleoperation, the teleoperators transmit their states or outputs to each other via network. Network uncertainties are induced from transmission distance, equipment limitation, and especially overloading network.
The topic can be broken into four parts. The first part is teleoperation under constant delays and packet loss using wave-variable transformation (WVT) and wave-variable modulation (WVM). The second is teleoperation using event-triggered communication and WVT under constant delays. For the third and fourth parts, we utilize event-triggered communication on P- or PD-based controllers with damping injection under constant delays. Besides, force-feedback is acheivable with the use of the proposed P- and PD-based control architectures.
The proposed teleoperation structures are analyzed using nonlinear control theory, and verified using simulations and experiments. The results are further compared and discussed. The simulation and experiment results show the asymptotical stability of the proposed structures, and external force was measured and recorded by force sensors to verify the force-feedback efficacy. Besides, the event-triggered communication lowers the transmission frequency.
[1] Peter F. Hokayem and Mark W. Spong. Bilateral teleoperation: An historical survey. Automatica, 42(12):2035–2057, 2006.
[2] Yen-Chen Liu and Nikhil Chopra. Control of robotic manipulators under input/output communication delays: Theory and experiments. Robotics, IEEE
Transactions on, 28(3):742–751, 2012.
[3] Robert J. Anderson and Mark W. Spong. Bilateral control of teleoperators with time delay. Automatic Control, IEEE Transactions on, 34(5):494–501,
1989.
[4] G¨unter Niemeyer and Jean-Jacques E. Slotine. Stable adaptive teleoperation. Oceanic Engineering, IEEE Journal of, 16(1):152–162, 1991.
[5] Dongjun Lee and Mark W. Spong. Passive bilateral teleoperation with constant time delay. Robotics, IEEE Transactions on, 22(2):269–281, 2006.
[6] Emmanuel Nuno, Romeo Ortega, Nikita Barabanov, and Luis Basanez. A globally stable pd controller for bilateral teleoperators. Robotics, IEEE Transactions on, 24(3):753–758, 2008.
[7] Emmanuel Nu˜no, Luis Basa˜nez, Romeo Ortega, and Mark W. Spong. Position tracking for non-linear teleoperators with variable time delay. The International Journal of Robotics Research, 28(7):895–910, 2009.
[8] Han Yu and Panos J. Antsaklis. Output synchronization of networked passive systems with event-driven communication. Automatic Control, IEEE Transactions on, 59(3):750–756, 2014.
[9] Han Yu and Panos J. Antsaklis. Distributed formation control of networked passive systems with event-driven communication. In Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, pages 3292–3297. IEEE, 2012.
[10] Xiangdong Liu, Changkun Du, Pingli Lu, and Dapeng Yang. Decentralized consensus for multiple lagrangian systems based on event-triggered strategy. International Journal of Control, (just-accepted):1–22, 2015.
[11] Na Huang, ZhiSheng Duan, and Yu Zhao. Distributed consensus for multiple euler-lagrange systems: An event-triggered approach. Science China Technological Sciences, pages 1–12.
[12] Wilhemus P. Heemels, Karl H. Johansson, and Paulo Tabuada. An introduction to event-triggered and self-triggered control. In Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, pages 3270–3285. IEEE, 2012.
[13] Mark W. Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot modeling and control. 2006.
[14] Nikhil Chopra and MarkW. Spong. Adaptive coordination control of bilateral teleoperators with time delay. In Decision and Control (CDC), 2004 IEEE
43rd Annual Conference on, pages 4540–4547. IEEE, 2004.
[15] Masaki Ishii, Shjnkichi Oshiro, and Takayoshi Itoh. The development and utilization of the “underwater backhoe,” a multifunctional underwater construction machine. In Underwater Technology (UT 00), 2000. Proceedings of the 2000 International Symposium on, pages 319–322. IEEE, 2000.
[16] Taketsugu Hirabayashi, Junichi Akizono, Takashi Yamamoto, Hiroshi Sakai, and Hiroaki Yano. Teleoperation of construction machines with haptic information
for underwater applications. Automation in construction, 15(5):563–570, 2006.
[17] Thomas B. Sheridan. Space teleoperation through time delay: review and prognosis. Robotics and Automation, IEEE Transactions on, 9(5):592–606,1993.
[18] Thomas B. Sheridan. Teleoperation, telerobotics and telepresence: A progress report. Control Engineering Practice, 3(2):205–214, 1995.
[19] Neil G. Hockstein, J Paul Nolan, Bert W. O’Malley, and Y Joseph Woo. Robotic microlaryngeal surgery: a technical feasibility study using the davinci surgical robot and an airway mannequin. The Laryngoscope, 115(5):780–785,2005.
[20] Alejandro Rodr´ıguez-Angeles, Juan Luis Guzm´an-Guti´errez, and C Cruz-Villar. User wearable interface based on inertial sensors for unilateral masterslave robot teleoperation. In Electrical Engineering Computing Science and Automatic Control (CCE), 2010 IEEE 7th International Conference on, pages 458–463. IEEE, 2010.
[21] David J. Todd. Fundamentals of robot technology: An introduction to industrial robots, teleoperators and robot vehicles. Springer Science & Business Media, 2012.
[22] Thomas B. Sheridan and William R Ferrell. Remote manipulative control
with transmission delay. Human Factors in Electronics, IEEE Transactions on, 4(1):25–29, 1963.
[23] William R Ferrell. Remote manipulation with transmission delay. Human Factors in Electronics, IEEE Transactions on, (1):24–32, 1965.
[24] Sandra Hirche and Martin Buss. Packet loss effects in passive telepresence systems. In Decision and Control, 2004. CDC. 43rd IEEE Conference on, volume 4, pages 4010–4015. IEEE, 2004.
[25] Nikhil Chopra, Mark W. Spong, and Rogelio Lozano. Synchronization of bilateral teleoperators with time delay. Automatica, 44(8):2142–2148, 2008.
[26] Nikhil Chopra, Mark W. Spong, Romeo Ortega, and Nikita E Barabanov. On tracking performance in bilateral teleoperation. Robotics, IEEE Transactions
on, 22(4):861–866, 2006.
[27] Farid Mobasser and Keyvan Hashtrudi-Zaad. Transparent rate mode bilateral teleoperation control. The International Journal of Robotics Research,
27(1):57–72, 2008.
[28] Dale A Lawrence. Stability and transparency in bilateral teleoperation. Robotics and Automation, IEEE transactions on, 9(5):624–637, 1993.
[29] Nikhil Chopra, Mark W. Spong, Sandra Hirche, and Martin Buss. Bilateral teleoperation over the internet: the time varying delay problem1. Urbana, 101:61801, 2003.
[30] Yasuyoshi Yokokohji, Takashi Imaida, and Tsuneo Yoshikawa. Bilateral teleoperation under time-varying communication delay. In Intelligent Robots and
Systems, 1999. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on, volume 3, pages 1854–1859. IEEE, 1999.
[31] Yasuyoshi Yokokohji, Teruhiro Tsujioka, and Tsuneo Yoshikawa. Bilateral control with time-varying delay including communication blackout. In Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2002. HAPTICS 2002. Proceedings. 10th Symposium on, pages 285–292. IEEE, 2002.
[32] Nikhil Chopra, Paul Berestesky, and Mark W. Spong. Bilateral teleoperation over unreliable communication networks. Control Systems Technology, IEEE Transactions on, 16(2):304–313, 2008.
[33] Yen-Chen Liu and Seng-Ming Puah. Passivity-based control for networked robotic system over unreliable communication. In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages 1769–1774. IEEE,
2014.
[34] Han Yu and Panos J. Antsaklis. Event-triggered output feedback control for networked control systems using passivity: Achieving l2 stability in the presence of communication delays and signal quantization. Automatica, 49(1):30–38, 2013.
[35] Maria Guinaldo, Daniel Lehmann, Javier Sanchez, Sebastian Dormido, and Karl H Johansson. Distributed event-triggered control with network delays and packet losses. In Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, pages 1–6. IEEE, 2012.
[36] Nikhil Chopra and Mark W. Spong. Passivity-based control of multi-agent systems. In Advances in Robot Control, pages 107–134. Springer, 2006.
[37] Hassan K. Khalil and Jessy W. Grizzle. Nonlinear systems, volume 3. Prentice hall New Jersey, 1996.
[38] French Mark, Szepesvari Csaba, and Rogers Eric. Performance of Nonlinear Approximate Adaptive Controllers. Wiley, 2003.
[39] Yen-Chen Liu and Nikhil Chopra. Synchronization of networked mechanical systems with communication delays and human input. Journal of Dynamic Systems, Measurement, and Control, 135(4):041004, 2013.
[40] Yen-Chen Liu and Nikhil Chopra. Control of robotic manipulators with inputoutput delays: An experimental verification. In Experimental Robotics, pages 823–837. Springer, 2014.