| 研究生: |
劉冠岑 Liu, Kuan-Tseng |
|---|---|
| 論文名稱: |
使用陰-陽離子混合界面活性劑合成各種形態之中孔洞氧化矽、磷酸鈣、磷酸鈣/二氧化矽複合材料 Synthesis of Mesoporous Silica、Apatite、Apatite/Silica Materials by Using Cationic and Anionic Binary Surfactant as Template |
| 指導教授: |
林弘萍
Lin, Hung-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 生物成礦 、中孔洞氧化矽 、磷酸鈣 |
| 外文關鍵詞: | biomineralization, mesoporous silica, apatite |
| 相關次數: | 點閱:127 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
分子自組裝的行為普遍存在於生物系統中,是各種複雜生物結構形成的基礎。本研究將此觀念應用於合成中孔洞結構材料,期盼能藉由改變不同反應組成和條件合成出各種氧化矽型態,了解自然界生物成礦的原理。
由界面活性劑化學得知,陽性-陰性離子型界面活性劑所組成的系統,可形成各種微胞結構和介尺度液晶相,適合作為合成中孔洞氧化矽的多元化模板。本實驗採用不同碳鏈長度之陽離子型界面活性劑 (CnTMAB n=14-18)及不同陰離子型界面活性劑(SDS,MDP)所形成的混合型界面活性劑系統作為有機模板,結合低濃度的無機物矽酸鈉(sodium silicate)溶液在不同溫度,水量,pH值之條件下,藉由調控實驗變因製備不同型態及結構的中孔洞氧化矽材料。
本研究所製成之氧化矽界尺度結構材料依照其型態分為三大類:一、條狀具c2mm結構之中孔洞氧化矽;二、繡花球狀氧化矽;三、紅血球狀氧化矽材料,其皆為特殊構型,且產物的均勻度高(>90%)。本實驗合成方法簡單,產率高,實驗再現性良好,對於了解自然界生物成礦的形成機制,及對於奈米孔洞材料在構型上的控制,具有很高的開發價值。
此外,以生物成礦的概念衍生至磷酸鈣、磷酸鈣/二氧化矽材料;實驗運用MDP陰離子型界面活性劑與鈣離子之間有很好的作用力,先形成陰陽離子混和之有機模板,再加入鈣離子及磷酸根離子、氧化矽源,可製備出薄片狀及空心球狀之複合材料,高溫鍛燒除去界面活性劑後,其表面積可達130 m2g-1 以上,未來在生醫玻璃有很好的發展價值。
Molecular self-assembly behavior generally exists in the living systems of complex structural forms which are the bases of diverse complex biological structure. Our approach is focused on understanding the theories of biomineralization in nature from preparation of mesoporous silica using different synthetic conditions.
According to surfactant chemistry, it is well known that there are various mesophases and morphologies in the mixture of cationic and anionic surfactants (i.e. catanionic surfactant). Therefore, the catanionic surfactants can be used as a versatile template to synthesize the mesoporous silica in various spectacular morphologies. In this experiment, we first mixed cationic surfactant( CnTMAB,n = 14-18 ) with anionic surfactant( SDS,MDP ) to form organic template, incorporated a highly-dilute inorganic sodium silicate solution in different pH value、anionic/cationic surfactant ratio and surfactant concentration and so on.
According to the structures of silica we synthesized, the experiment can be divided into three main part:
1. the strip mesoporous silica with c2mm structure
2. Hydrangea Ball liked silica
3. Red blood ball liked silica
This synthetic method is simple and has high yield and reproducibility. Therefore, our research results have high referencing values for understanding biomineralization concepts and theories as well as extrapolating the mechanism
In another way, deriving from biomineralization to synthesize apatite and apatite/silica hybrid materials; using the interaction between MDP anionic surfactants and calcium (2+), at first we synthesized the catanionic surfactant system organic template , than added calcium(2+)、phosphate ions and TEOS, can synthesize film and vesicle hybrid material, after 600°C calcined, the surface area can higher than 130 m2g-1,our research results have high referencing values for bioglass.
1.M. B, X. H. Wu, R. J. Christensen, P. K. Hansma, G. D.Stucky, D. E. Morse, Nature 1996, 381, 56.
2.Nils Kroger, Nicole Poulsen , Annu. Rev. Genet. 2008. 42,83.
3.T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.
4.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
5.H. Heuer, D. J. Fink, V. J. Laraia, J. L. Arias, P. D. Calvert, K. Kendall, G. L. Messing, J. Blackesll, P. C. Rieke, D. H. Thompson, A. P. Wheeler, A. Veis, A. I. Caplplan, Science, 1992, 255, 1098.
6.Sayari , Chem. Mater., 1996, 8, 1840.
7.R. Neumann, A. M. Khenkin, Chem. Commun., 1996, 23, 2643.
8.B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39, 63
9.M. Hartmann, A. Popll , L. Kenvan, J. Phys. Chem., 1996,100, 9906.
10.A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal., 1994, 84, 69.
11.C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
12.C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
13.C.-G. Wu, T. Bein, Chem. Mater., 1994, 266, 1109.
14.Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
15.J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, D. Zhao, Angew. Chem., 2003, 115 , 3254.
16.A. Vinu, V. Murugesan, M. Hartmann, Chem. Mater. 2003, 15, 1385.
17.H. P. Lin, C. Y Tang and C. Y. Lin, J. Chin. Chem. Soc., 2002, 49, 981.
18.V. Alfredsson and M. W. Anderson, Chem. Mater., 1996, 8, 1141.
19.H. P. Lin and C. Y. Mou, Acc. Chem. Rev., 2002, 35, 927.
20.J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y.-U Kwon, O. Terasaki, S.–E. Park and G. D. Stucky, J. Phys. Chem. B., 2002, 106, 2552.
21.A. Bhaumik and S. Inagaki, J. Am. Chem. Soc., 2001, 123, 691.
22.Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou Xiao, Angew. Chem. Int. Ed., 2001, 7, 1258.
23.A. Walcarius, M. Etienne, B. Lebeau, Chem. Mater. 2003, 15, 2161.
24.T. Yokoi, H. Yoshitake, T. Tatsumi, J. Mater. Chem. 2004, 14 , 951.
25.J. M. Cha, G. D. Stucky, D. E. Morse, T. J. Deming, Nature, 2000, 48, 289.
26.E. B. Erlein, Angew. Chem. Int. Ed. 2003, 42, 614.
27.Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie, H. Xu, Angew. Chem. Int. Ed. 2003, 42, 413.
28.S. Mann, Angew. Chem. Int. Ed. 2000, 39, 3392.
29.N. Kröger, R. Deutzmann, M. Sumper, Science 1999, 286, 1129.
30.E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes, Angew. Chem. Int. Ed. 2002, 41, 1543
31.T. F. Todros, Surfactants, Academic Press : London, 1984.
32.N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
33.D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 1264.
34.S. Consola, M. Blanzat, E. Perez, J-C. Garrigues, P. Bordat, I. R. Lattes, Chem. Eur. J. 2007, 13, 3039
35.E. W. Kaler, A. K. Murthy, B.E. Rodriguez, J. A. N. Zasadzinski, Science, 1989, 245, 1371.
36.L. L. Brasher, K. L. Herrington, E. W. Kaler, Langmuir, 1995, 11, 4267.
37.M. T. Yatcilla, K. L. Herrington, L. L. Brasher, E. W. Kaler, S. Chiruvolu, J. A. Zasadzinski, J. Phys. Chem. 1996, 100 , 5874.
38.K. Tsuchiya, H. Nakanishi, H. Sakai, M. Abe, Langmuir, 2004, 20, 2117.
39.C. Letizia, P. Andreozzi, A. Scipioni, C. La Mesa, A. Bonincontro, and E. Spigone, J. Phys. Chem. B, 2007, 111, 898
40.R. Aelion, A. Loebel and F. Eirich, J. Am. Chem. Soc., 1950, 72, 5705
41.C. Okkerse, B. G. Linsen, Physical Chem. Aspects of Adsorbents and Catalysis, Academic, New York, 1970
42.廖文家,“壓克力/二氧化矽混成材料的製備與性質研究”,中原大學化學研究所,2005
43.鄭舜宇,“以溶膠-凝膠法合成高分子基氧化矽複合材料之研究”,中山大學材料科學研究所,2001
44. 陳俊光,“以溶凝膠法合成PMMA/氧化矽複合材料的光譜、熱性質、與型態分析”,中原大學化學系研究所,2003
45. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky, Chem. Mater. 1994, 6, 1176.
46. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, 1998, 273,548.
47. H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
48. C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids, 1985, 70, 301.
49. K. Yamashita, H. Owada, H. Nakagawa, T. Umegaki and T. Kanazawa, J Am Ceram Soc, 1986, 69, 590-594
50. 王寶琪, “電漿熔射氫氧基磷灰石披覆於鈦鋁釩合金基材生醫塗層之生物特性與生物反應研究”國立成功大學材料科學與工程研究所博士論文,1994
校內:2014-07-11公開