| 研究生: |
邱馨誼 Chiu, Hsin-Yi |
|---|---|
| 論文名稱: |
粒線體移植在神經病變性疼痛大鼠之潛在治療效果 The Therapeutic Potential of Mitochondrial Transplantation in a Rat Model of Neuropathic Pain |
| 指導教授: |
李榮順
Lee, Jung-Shun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 細胞凋亡 、粒線體 、粒線體移植 、神經發炎 、神經病變性疼痛 |
| 外文關鍵詞: | Apoptosis, mitochondria, mitochondrial transplantation, neuroinflammation, neuropathic pain |
| 相關次數: | 點閱:133 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經病變性疼痛是由於體感覺系統受損所引發的一系列痛覺異常現象,常見症狀包含觸摸痛以及痛覺過敏。神經發炎、粒線體功能異常以及細胞死亡已經被證實和神經病變性疼痛的發生和持續具有高度相關性;其中又以粒線體功能異常最為關鍵,於是以改善粒線體功能異常為目標的療法開啟了治療神經病變性疼痛的新策略。粒線體移植是一個新穎的治療方法,在心臟缺血後再灌注以及脊髓損傷模式的實驗中都顯示其相當的組織功能復原效果。本篇研究旨在探討粒線體移植在大鼠神經病變性疼痛模式中的神經調節作用。吾人將粒線體移植入右側第五腰椎神經結紮之大鼠背根神經節內,結果顯示在粒線體移植七天後疼痛超敏反應得到顯著緩解。除此之外,粒線體移植也顯著降低在傷側脊髓背角的促發炎細胞因子以及細胞凋亡蛋白。免疫螢光染色結果顯示星狀膠細胞以及小膠細胞在傷側脊髓背角的活化情形隨粒線體移植得到降低。粒線體追蹤染色(MitoTracker deep red)顯示異源線粒體可以存活於第五腰椎背根神經節、第五腰椎脊髓以及坐骨神經。線粒體移植有追蹤潛在受傷組織之能力以調節細胞凋亡和發炎反應,因此透過本篇研究吾人認為粒線體移植具有神經保護作用。
Neuropathic pain is caused by damage to the somatosensory system and induces abnormal pain sensitivity, which is characterized by allodynia and hyperalgesia. Neuroinflammation, mitochondrial dysfunction, and cell death are hallmarks in the pathogenesis of neuropathic pain. Mitochondrial dysfunction, which is a consequence of neuroinflammation and results in further cell death, plays the most crucial role in neuropathic pain. Therefore, strategies that target mitochondrial dysfunction are emerging to treat neuropathic pain. A novel approach of mitochondrial transplantation has achieved therapeutic effects on myocardial ischemic-reperfusion and spinal cord injury models; however, little is known about its application to neuropathic pain. Therefore, this study aimed to investigate the neuromodulation effect of mitochondrial transplantation in a neuropathic pain model.
In this study, neuropathic pain was induced by right L5 spinal nerve ligation (SNL). Seven days after the mitochondrial transplantation into the right L5 dorsal root ganglion (DRG) of SNL rats, pain hypersensitivity was significantly palliated. Furthermore, TNF-α, IL-6, IL-1β, and caspase 3 expression reduced and the Bcl-2/Bax ratio significantly increased in the ipsilateral spinal cord of the mitochondrial transplantation group on post-SNL day (PSD) 7. Immunofluorescence showed plethora astrocytes and microglia activation in the ipsilateral spinal cord on PSD 7, which declined after mitochondrial transplantation. MitoTracker deep red staining showed that allogenic mitochondria were evident in the L5 DRG, L5 spinal cord, and sciatic nerve. Collectively, transplanted mitochondria migrate to potential injured sites to moderate neural apoptosis and inflammation, which is indicative of their neuroprotective effect.
1. Zou Y, Cao Y, Liu Y, Zhang X, Li J, Xiong Y. The role of dorsal root ganglia PIM1 in peripheral nerve injury-induced neuropathic pain. Neurosci Lett. 2019;709:134375.
2. Cohen SP, Mao J. Neuropathic pain: mechanisms and their clinical implications. BMJ. 2014;348:f7656.
3. Williams AC, Craig KD. Updating the definition of pain. Pain. 2016;157(11):2420-3.
4. Romero-Sandoval EA, Kolano AL, Alvarado-Vázquez PA. Cannabis and Cannabinoids for Chronic Pain. Curr Rheumatol Rep. 2017;19(11):67.
5. Sui BD, Xu TQ, Liu JW, Wei W, Zheng CX, Guo BL, et al. Understanding the role of mitochondria in the pathogenesis of chronic pain. Postgrad Med J. 2013;89(1058):709-14.
6. Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet. 1999;353(9168):1959-64.
7. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, et al. Neuropathic pain - Redefinition and a grading system for clinical and research purposes. Neurology. 2008;70(18):1630-5.
8. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, et al. Neuropathic pain. Nat Rev Dis Primers. 2017;3:17002.
9. Raju H, Tadi P. Neuroanatomy, Somatosensory Cortex. StatPearls. Treasure Island (FL): StatPearls Publishing
Copyright © 2020, StatPearls Publishing LLC.; 2020.
10. Al-Chalabi M, Reddy V, Gupta S. Neuroanatomy, Spinothalamic Tract. StatPearls. Treasure Island (FL): StatPearls Publishing
Copyright © 2020, StatPearls Publishing LLC.; 2020.
11. Zheng N, Liu X, Zhang R, Ho I, Chen S, Xu J, et al. Jingshu Keli attenuates cervical spinal nerve ligation-induced allodynia in rats through inhibition of spinal microglia and Stat3 activation. Spine J. 2018;18(11):2112-8.
12. Terayama R, Yamamoto Y, Kishimoto N, Tabata M, Maruhama K, Iida S, et al. Differential Changes in Neuronal Excitability in the Spinal Dorsal Horn After Spinal Nerve Ligation in Rats. Neurochem Res. 2016;41(11):2880-9.
13. Flatters SJL, Bennett GJ. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: Evidence for mitochondrial dysfunction. Pain. 2006;122(3):245-57.
14. Jaggi AS, Singh N. Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology. 2012;291(1-3):1-9.
15. Zakin E, Abrams R, Simpson DM. Diabetic Neuropathy. Semin Neurol. 2019;39(5):560-9.
16. Miyata S, Kitagawa H. Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj. 2017;1861(10):2420-34.
17. Liu ZY, Song ZW, Guo SW, He JS, Wang SY, Zhu JG, et al. CXCL12/CXCR4 signaling contributes to neuropathic pain via central sensitization mechanisms in a rat spinal nerve ligation model. CNS Neurosci Ther. 2019;25(9):922-36.
18. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and Molecular Mechanisms of Pain. Cell. 2009;139(2):267-84.
19. Nakamura Y, Park JH, Hayakawa K. Therapeutic use of extracellular mitochondria in CNS injury and disease. Exp Neurol. 2020;324:113114.
20. Chen LH, Yeh YM, Chen YF, Hsu YH, Wang HH, Lin PC, et al. Targeting interleukin-20 alleviates paclitaxel-induced peripheral neuropathy. Pain. 2020;161(6):1237-54.
21. De Logu F, Nassini R, Materazzi S, Carvalho Goncalves M, Nosi D, Rossi Degl'Innocenti D, et al. Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat Commun. 2017;8(1):1887.
22. Zhao XY, Lu MH, Yuan DJ, Xu DE, Yao PP, Ji WL, et al. Mitochondrial Dysfunction in Neural Injury. Front Neurosci. 2019;13:30.
23. Wu Y, Chen M, Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion. 2019;49:35-45.
24. Linkermann A, Chen G, Dong G, Kunzendorf U, Krautwald S, Dong Z. Regulated cell death in AKI. J Am Soc Nephrol. 2014;25(12):2689-701.
25. Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013;1833(12):3460-70.
26. Palladino MA, Bahjat FR, Theodorakis EA, Moldawer LL. Anti-TNF-α therapies: the next generation. Nature Reviews Drug Discovery. 2003;2(9):736-46.
27. Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12(1):49-62.
28. Wang L, Yin C, Liu T, Abdul M, Zhou Y, Cao J-L, et al. Pellino1 regulates neuropathic pain as well as microglial activation through the regulation of MAPK/NF-κB signaling in the spinal cord. Journal of Neuroinflammation. 2020;17(1):83.
29. de Almagro MC, Vucic D. The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Exp Oncol. 2012;34(3):200-11.
30. Zhou YQ, Liu Z, Liu ZH, Chen SP, Li M, Shahveranov A, et al. Interleukin-6: an emerging regulator of pathological pain. J Neuroinflammation. 2016;13(1):141.
31. Yuan Z-L, Guan Y-J, Wang L, Wei W, Kane AB, Chin YE. Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells. Mol Cell Biol. 2004;24(21):9390-400.
32. Green DR. Means to an End: Apoptosis and Other Cell Death Mechanisms. Green DR, editor: Cold Spring Harbor Laboratory Press; 2011.
33. Wajant H. The Fas signaling pathway: more than a paradigm. Science. 2002;296(5573):1635-6.
34. Nirmala JG, Lopus M. Cell death mechanisms in eukaryotes. Cell Biology and Toxicology. 2020;36(2):145-64.
35. Kiraz Y, Adan A, Kartal Yandim M, Baran Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol. 2016;37(7):8471-86.
36. Zorzano A, Hernández-Alvarez M, Sebastián D, Muñoz J. Mitofusin 2 as a Driver That Controls Energy Metabolism and Insulin Signaling. Antioxidants & redox signaling. 2015;22(12):1020-31.
37. Hollville E, Romero SE, Deshmukh M. Apoptotic cell death regulation in neurons. Febs j. 2019;286(17):3276-98.
38. Hekimi S, Wang Y, Noë A. Mitochondrial ROS and the Effectors of the Intrinsic Apoptotic Pathway in Aging Cells: The Discerning Killers! Front Genet. 2016;7:161.
39. Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. 2018;128(9):3716-26.
40. Yi MH, Shin J, Shin N, Yin Y, Lee SY, Kim CS, et al. PINK1 mediates spinal cord mitophagy in neuropathic pain. J Pain Res. 2019;12:1685-99.
41. Ge Y, Jiao Y, Li P, Xiang Z, Li Z, Wang L, et al. Coregulation of endoplasmic reticulum stress and oxidative stress in neuropathic pain and disinhibition of the spinal nociceptive circuitry. Pain. 2018;159(5):894-906.
42. Jaggi AS, Jain V, Singh N. Animal models of neuropathic pain. Fundam Clin Pharmacol. 2011;25(1):1-28.
43. Attal N. Pharmacological treatments of neuropathic pain: The latest recommendations. Rev Neurol (Paris). 2019;175(1-2):46-50.
44. Wright ME, Rizzolo D. An update on the pharmacologic management and treatment of neuropathic pain. Jaapa. 2017;30(3):13-7.
45. Hatch MN, Cushing TR, Carlson GD, Chang EY. Neuropathic pain and SCI: Identification and treatment strategies in the 21st century. J Neurol Sci. 2018;384:75-83.
46. Harrison C, Epton S, Bojanic S, Green AL, FitzGerald JJ. The Efficacy and Safety of Dorsal Root Ganglion Stimulation as a Treatment for Neuropathic Pain: A Literature Review. Neuromodulation. 2018;21(3):225-33.
47. Liu F, Lu J, Manaenko A, Tang J, Hu Q. Mitochondria in Ischemic Stroke: New Insight and Implications. Aging Dis. 2018;9(5):924-37.
48. Emani SM, Piekarski BL, Harrild D, Del Nido PJ, McCully JD. Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2017;154(1):286-9.
49. McCully JD, Cowan DB, Pacak CA, Toumpoulis IK, Dayalan H, Levitsky S. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Physiol Heart Circ Physiol. 2009;296(1):H94-H105.
50. Fang SY, Roan JN, Lee JS, Chiu MH, Lin MW, Liu CC, et al. Transplantation of viable mitochondria attenuates neurologic injury after spinal cord ischemia. J Thorac Cardiovasc Surg. 2019;S0022-5223(19):32775-8.
51. Gollihue JL, Patel SP, Eldahan KC, Cox DH, Donahue RR, Taylor BK, et al. Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury. J Neurotrauma. 2018;35(15):1800-18.
52. Masuzawa A, Black KM, Pacak CA, Ericsson M, Barnett RJ, Drumm C, et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2013;304(7):H966-82.
53. McCully JD, Levitsky S, Del Nido PJ, Cowan DB. Mitochondrial transplantation for therapeutic use. Clin Transl Med. 2016;5(1):16.
54. Austin PJ, Moalem-Taylor G. Pathophysiology of neuropathic pain: inflammatory mediators. In: Toth C, Moulin DE, editors. Neuropathic Pain: Causes, Management and Understanding. Cambridge: Cambridge University Press; 2013. p. 77-89.
55. Zhang J-M, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45(2):27-37.
56. Hung AL, Lim M, Doshi TL. Targeting cytokines for treatment of neuropathic pain. Scand J Pain. 2017;17:287-93.
57. Wang K, Bao JP, Yang S, Hong X, Liu L, Xie XH, et al. A cohort study comparing the serum levels of pro- or anti-inflammatory cytokines in patients with lumbar radicular pain and healthy subjects. Eur Spine J. 2016;25(5):1428-34.
58. Pedersen LM, Schistad E, Jacobsen LM, Røe C, Gjerstad J. Serum levels of the pro-inflammatory interleukins 6 (IL-6) and -8 (IL-8) in patients with lumbar radicular pain due to disc herniation: A 12-month prospective study. Brain Behav Immun. 2015;46:132-6.
59. Chen J-Y, Chu L-W, Cheng K-I, Hsieh S-L, Juan Y-S, Wu B-N. Valproate reduces neuroinflammation and neuronal death in a rat chronic constriction injury model. Scientific Reports. 2018;8(1):16457.
60. Ramer MS, Ma W, Murphy PG, Richardson PM, Bisby MA. Galanin Expression in Neuropathic Pain: Friend or Foe?a. Annals of the New York Academy of Sciences. 1998;863(1):390-401.
61. Mei XP, Sakuma Y, Xie C, Wu D, Ho I, Kotani J, et al. Depressing interleukin-1β contributed to the synergistic effects of tramadol and minocycline on spinal nerve ligation-induced neuropathic pain. Neurosignals. 2014;22(1):30-42.
62. Lowes DA, Webster NR, Murphy MP, Galley HF. Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. British journal of anaesthesia. 2013;110(3):472-80.
63. Schäfers M, Sorkin LS, Geis C, Shubayev VI. Spinal nerve ligation induces transient upregulation of tumor necrosis factor receptors 1 and 2 in injured and adjacent uninjured dorsal root ganglia in the rat. Neurosci Lett. 2003;347(3):179-82.
64. Wen J, Jones M, Tanaka M, Selvaraj P, Symes AJ, Cox B, et al. WWL70 protects against chronic constriction injury-induced neuropathic pain in mice by cannabinoid receptor-independent mechanisms. Journal of Neuroinflammation. 2018;15(1):9.
65. Sekiguchi M, Sekiguchi Y, Konno S-I, Kobayashi H, Homma Y, Kikuchi S-I. Comparison of neuropathic pain and neuronal apoptosis following nerve root or spinal nerve compression. Eur Spine J. 2009;18(12):1978-85.
66. Deng Y, Yang L, Xie Q, Yang F, Li G, Zhang G, et al. Protein Kinase A Is Involved in Neuropathic Pain by Activating the p38MAPK Pathway to Mediate Spinal Cord Cell Apoptosis. Mediators of Inflammation. 2020;2020:6420425.
67. Buckman JF, Hernández H, Kress GJ, Votyakova TV, Pal S, Reynolds IJ. MitoTracker labeling in primary neuronal and astrocytic cultures: influence of mitochondrial membrane potential and oxidants. J Neurosci Methods. 2001;104(2):165-76.
68. Xiao B, Deng X, Zhou W, Tan E-K. Flow Cytometry-Based Assessment of Mitophagy Using MitoTracker. Frontiers in Cellular Neuroscience. 2016;10:76.
69. Chou SH, Lan J, Esposito E, Ning M, Balaj L, Ji X, et al. Extracellular Mitochondria in Cerebrospinal Fluid and Neurological Recovery After Subarachnoid Hemorrhage. Stroke. 2017;48(8):2231-7.
70. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613):551-5.
71. Li H, Wang C, He T, Zhao T, Chen YY, Shen YL, et al. Mitochondrial Transfer from Bone Marrow Mesenchymal Stem Cells to Motor Neurons in Spinal Cord Injury Rats via Gap Junction. Theranostics. 2019;9(7):2017-35.
72. Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol. 2012;13(12):780-8.
73. Chang MF, Hsieh JH, Chiang H, Kan HW, Huang CM, Chellis L, et al. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection. Sci Rep. 2016;6:35612.