簡易檢索 / 詳目顯示

研究生: 陳聿翎
Chen, Yu-Ling
論文名稱: 內外環表面波紋對滾珠軸承轉子系統之非線性動態分析
Nonlinear Dynamic Analysis of Rotor-Ball Bearing System due to Surface Waviness of Inner and Outer Race
指導教授: 崔兆棠
Choi, Siu-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 73
中文關鍵詞: 非線性表面波紋滾珠軸承軸承轉子系統
外文關鍵詞: nonlinear, surface waviness, ball bearing, rotor-bearing system
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究滾珠軸承轉子系統的內外環含表面波紋之非線性動態分析。系統由一內外環含表面波紋及間隙之滾珠軸承支撐一水平轉軸,並且滾珠軸承受一恆定的垂直徑向預壓,而系統的轉軸假設為剛體,且轉軸與內環緊密連接無滑動。非線性現象來自於軸承滾珠與內外環之間的赫茲接觸、內外環表面波紋與徑向間隙。本文利用Lagrange’s equation描述系統之動態行為,之後採用Newmark-β法解非線性聯立方程組。透過頻譜圖、龐加萊截面及瀑布圖,探討內外環之波紋數及轉子轉速對於系統動態行為的影響。由數值結果顯示波紋數越大,產生諧振的頻率越大,且內外環的諧振頻率數值皆有一定的規律。

    Nonlinear dynamic behavior of rotor-ball bearing system due to surface waviness of inner and outer races is studied. The system consists of a horizontal shaft which is supported by a ball bearing with a constant vertical radial preload and surface waviness of inner and outer races. The rotor is considered to be rigid and shaft is tied to the inner ring without slipping. The non-linearity is due to surface waviness and the Hertzian contact between the races and the balls. The governing differential equations of motion are obtained by using Lagrange’s equations. The numerical integration method used in the present analysis is based on the Newmark-β method. Through the spectrograms, Poincaré maps, and waterfall plots, effects of number of waves and rotational speed on dynamic behavior of the system are studied. Numerical results show that, as the waviness order increases, the peak amplitude of vibration will appear at higher frequency. Also, there is a certain regulation within the waviness order of inner and outer races and vibration frequency.

    摘要 i 誌謝 v 表目錄 ix 圖目錄 x 符號說明 xiii 第一章 緒論 1 1-1研究動機 1 1-2文獻回顧 3 1-3本文研究 6 第二章 非線性動態與混沌研究方法 8 2-1頻域響應 9 2-1-1離散傅立葉變換(DFT) 9 2-2龐加萊截面(Poincaré Section) 10 2-3吸引子(Attractor) 12 第三章 滾珠軸承轉子系統 15 3-1滾珠軸承之幾何分析 15 3-2赫茲接觸力 16 3-3表面波紋 18 3-3-1內環表面波紋 19 3-3-2外環表面波紋 20 3-4 利用Lagrange’s equation建立系統之動態行為 21 3-4-1外環之動能及位能 22 3-4-2內環之動能及位能 22 3-4-3滾珠之動能及位能 23 3-4-4轉子之動能及位能 24 3-4-5彈簧位能 24 3-5軸承轉子系統之運動方程式 25 第四章 數值模擬結果與討論 29 4-1程式驗證 32 4-2在不同外環表面波紋數下之系統動態分析 35 4-3在不同內環表面波紋數下之系統動態分析 36 4-4轉子質量對非線性滾珠軸承轉子系統之影響 37 4-5滾珠數量對系統之影響 37 4-6徑向垂直預壓對系統之影響 38 第五章 結論 39 參考文獻 41

    [1] Lorenz, E. N., “Deterministic Non-Periodic Flow,” Journal of Atmospheric Science, Vol. 20, pp. 130-141, 1963.
    [2] Hertz, H, “On the Contact of Rigid Elastic Solids and on Hardness,” Miscellaneous Papers, MacMillan, London,pp. 163-183 1896.
    [3] Sunnersjo, C. S., “Varying Compliance Vibrations of Rolling Bearings,” Journal of Sound and Vibration, Vol. 58, pp. 363-1188, 1978.
    [4] Fukata, S., Gad, E. H., Kondou, T., Ayabe, T., and Tamura, H., “On the Radial Vibration of Ball Bearings,” Bulletin of the JSME, Vol. 28, pp. 899-904, 1985.
    [5] Mevel, B., and Guyader, J. L., “Routes to Chaos in Ball Bearings,” Journal of Sound and Vibration, Vol. 162, pp. 471-487, 1993.
    [6] Yamamoto, T., “On the Vibration of a Shaft Supported by Bearing Having Radial Clearances,” Transaction of the JSME, Vol. 21, pp. 182-192, 1955.
    [7] Childs, D. W., “Fractional-Frequency Rotor Motion due to Nonsymmetric Clearance Effects,” ASME Journal of Engineering Power, Vol. 104, pp. 533-536, 1982.
    [8] Tiwari, M., Gupta, K., and Prakash, O., “Effect of Radial Internal Clearance of a Ball Bearing on the Dynamic of a Balanced Horizontal Rotor,” Journal of Sound and Vibration, Vol. 238, pp. 723-756, 2000.
    [9] 黃名正,滾珠軸承轉子系統之非線性動態分析,國立成功大學航空太空工程學系碩士論文,2016。
    [10] Tallian, T. E., and Gustafsson, O. G., “Progress in Rolling Bearing Vibration Research and Control,” ASLE Transactions, Vol. 8, pp. 195-207, 1965.
    [11] Harsha, S. P., Sandeep, K., and Prakash, R., “Non-linear Dynamic Behaviors of Rolling Element Bearings due to Surface Waviness,” Journal of Sound and Vibration, Vol. 272, pp. 557-580, 2004.
    [12] Rafsanjani, A., Abbasion, S., Farshidianfar, A., and Moeenfard, H., “Nonlinear Dynamic Modeling of Surface Defects in Rolling Element Bearing Systems, ” Journal of Sound and Vibration, Vol. 319, pp. 1150-1174, 2009.
    [13] Niu, L., Cao, H., He, Z., and Li, Y., "Dynamic Modeling and Vibration Response Simulation for High Speed Rolling Ball Bearings With Localized Surface Defects in Raceways," Journal of Manufacturing Science and Engineering, Vol. 136, pp. 041015-1 - 041015-16, 2014.
    [14] Yuan, X., Zhu, Y.-S., and Zhang, Y.-Y., "Multi-Body Vibration Modelling of Ball Bearing–Rotor System Considering Single and Compound Multi-Defects," Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, Vol. 228, pp. 199-212, 2014.
    [15] Lee, A. C., Kang, Y., and Liu, S. L., “Steady-State Analysis of a Rotor Mounted on Nonlinear Bearing by the Transfer Matrix Method,” International Journal of Mechanical Science, Vol. 35, No. 6, pp. 479-490, 1993.
    [16] Oppenheim, A. V., Discrete-Time Signal Processing, Pearson Education India, 1999.
    [17] 劉秉正,非線性動力學與混沌基礎,財團法人徐氏基金會,1998。
    [18] Harris, T. A., Rolling Bearing Analysis, John Wiley & sons, New York, 4th Ed, 2001.
    [19] Newmark, N. M., “A Method of Computation for Structural Dynamics,” Journal of the Engineering Mechanics Division, Vol. 85, pp. 67-94, 1959.
    [20] Yhland, E. M., “Waviness Measurement-An Instrument for Quality Control in Rolling Bearing Industry,” Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, Vol. 182, pp. 438-445, 1967.

    無法下載圖示 校內:2023-01-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE