| 研究生: |
黃烟宏 Huang, Yan-Hong |
|---|---|
| 論文名稱: |
連續小波轉換應用於基樁完整性檢測之研究 The Study of Pile Integrity Test Using Continuous Wavelets Transform |
| 指導教授: |
倪勝火
Ni, Sheng-Huoo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 音波回音法 、數值模擬 、連續小波轉換 、完整性檢測 |
| 外文關鍵詞: | integrity test, sonic echo method, numerical simulation, continuous wavelets transform |
| 相關次數: | 點閱:89 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
應用應力波傳理論發展之基樁完整性檢測法,於近年來被廣為使用於新建基樁之完整性及樁長之檢驗,其中尤以音波回音法最常被使用。本法具有經濟、快速、安全及涵蓋範圍廣的優點,但由於現地土壤造成能量的衰減,因而對於長大型基樁之檢測,常導致基樁完整性或樁底位置的難以判別。
本研究以有限元素分析軟體ABAQUS模擬三維基樁完整性檢測之音波回音法。基樁混凝土及樁周土壤採用三維實體元素C3D8R模擬,並假設其為線彈性材料。模擬結果與基本的應力波傳理論相符合。本研究模擬討論之基樁為非對稱頸縮缺陷基樁,內容包含:基樁樁頂接收器位置對接收信號的影響;不同基樁頸縮缺陷面積之檢測能力比較;各種不同長徑比基樁之衝擊荷重延時最適化探討;不同強度之層狀土壤對於檢測訊號之影響程度。將以上之模擬訊號進行低通濾波處理,再輔以連續小波轉換分析,以期能突顯速度歷時曲線不易察覺之缺陷或樁底回彈訊號。最後,本研究亦對現地敲擊檢測訊號以連續小波轉換進行分析。研究結果證明,以音波回音法檢測基樁,並配合連續小波轉換進行檢測訊號之判讀,將可有效且快速的突顯缺陷及樁底位置,有助於分析人員更準確的掌握基樁之完整性。
Pile integrity test (PIT), which applies stress wave theory to develop, has been widely used to test the integrity and the length of newly completed piles recently. Sonic echo (SE) method, one of PIT methods, has the most frequently been used due to its economical, fast, safe, and furthermore, it can cover a wide range of tests. However, when it comes to the test of a large diameter and long pile, due to the energy decay caused by the surrounding soil, the integrity of pile and the location of pile tip will be hard to identify.
In this study, SE method is simulated by using Finite Element Method software, ABAQUS. The concrete of piles and the surrounding soil of the piles are simulated by 3D solid element, C3D8R. The piles are assumed to be a linear elastic material. The result of simulation agrees well with that of using the basic stress wave theory. The piles used to simulate and to discuss in this study are the unsymmetrical necking flaws of piles. Discussions in this study include the effect of receiving signal due to the positions of geophones at pile head, the comparison of testing abilities among different necking areas of piles, the suitability of impulse duration in piles with different depth/diameter ratio, the influence of the layer soil with different intensity has on detecting signal. The signal is processed by low pass filter and continuous wavelets transform (CWT) to enforce the feature of the reflective signal caused by flaws or pile tips. Also, the signal detected in situ is analyzed by CWT method. The result shows that using SE method and CWT to enforce the flaws of the piles and the pile tips will be helpful for grasping the pile integrity test result more accurately.
參 考 文 獻
1. 王弘義,「基樁應力波非破壞檢測技術之比較評估」,碩士論文,朝陽科技大學營建工程系(2003)。
2. 余文裕,「在樁帽與群樁效應下檢測基樁長度之理論與實驗研究」,碩士論文,中華大學土木工程學系(2000)。
3. 李立愷,「小波分析法應用於土層層序及內涵物之檢測研究」,碩士論文,國立成功大學土木工程研究所(2005)。
4. 李俊男,「脈波反應法應用於基樁之模擬與分析」,碩士論文,國立成功大學土木工程研究所(2005)。
5. 林永強,「以阻傳遞矩陣反算基樁動力參數之初步研究」,碩士論文,朝陽科技大學營建工程系(2003)。
6. 林明勳、廖述濤,「無樁帽單樁與含樁帽群樁之非破壞檢測案例研究」,台灣公路工程,第30卷,第6期,第2-18頁(2003)。
7. 林俊雄、吳曜丞、陳剛南、康裕明,「應力波起始到達時間之數值模擬與探討」,中華民國第二十五屆全國力學會議(2001)。
8. 林政勳,「細長混凝土桿之應力衝擊錘反應研究」,碩士論文,朝陽科技大學營建工程系(2003)。
9. 倪勝火,「基樁的破壞性檢測與案例」,地工技術雜誌,第52期,第49-62頁(1995)。
10. 倪勝火,羅國峯,周憲民,黃烟宏,「敲擊回應法檢測基樁與小波轉換法之應用簡介」,公共工程非破壞檢測研討會暨產學座談會,第65-92頁(2005)。
11. 倪勝火、廖述濤,「基樁之檢測與評估」,第一屆公共工程非破壞檢測技術研討會,台北,第156-215頁(1999)。
12. 倪勝火、羅國峯、黃崧愷,「基樁施工之品質檢測」,土木工程非破壞檢測研討會論文集,高雄,第1-37頁(1999)。
13. 單維彰,凌波初步(First concept of wavelets),全華科技圖書(1999)。
14. 彭仁相,「基樁衝擊反應檢測法在現地進行參數變化與數值模式比對之研究」,碩士論文,中華大學土木工程學系(2003)。
15. 廖述濤,「基樁之脈波反應測試及力學導納分析」,中華民國非破壞檢測協會,第14卷,第2期(3-4),第94-103頁(1996)。
16. 賴正昇,「脈波回音法應用於基樁之模擬與分析」,碩士論文,國立成功大學土木工程研究所(2005)。
17. 謝旻勳,「獨立基樁非破壞檢測訊號之研究」,碩士論文,朝陽科技大學營建工程系(2004)。
18. 謝旻勳,賴俊仁,余志鵬,「接收器位置對基樁缺陷檢測能力之影響」,第十二屆非破壞檢測技術研討會(2004)。
19. 羅國峯,「音波回應法在基樁非破壞性檢測之探討與應用」,碩士論文,國立成功大學土木工程研究所(2000)。
20. ABAQUS Analysis User’s Manual Version 6.4.
21. ABAQUS Theory Manual Version 6.4.
22. ABAQUS/Explicit User’s Manual Version 6.4.
23. Annual Book of ASTM Standard, Vol. 04.02 (1992).
24. Chow, Y.K., Phoon, K.K., Chow, W.F., and Wong, K.Y., “Low Strain Integrity Testing of Piles:Three-Dimensional Effects,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 11, November 1 (2003).
25. Das, B.M., Principles of soil Dynamics, PWS-KENT Publishing Company, Boston (1993).
26. Daubechies, I., “Ten Lectures on Wavelets,” CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, vol. 61 (1992).
27. Davis, A.G., and Dunn, C.S., “From Theory to Field Experience with the Non-destructive Vibration Testing of piles,” Proc. Inst.Civil Eng., Part 2, 57, pp. 571-593 (1974).
28. Finno, R.J., and Gassman, S.L., “Impulse Response Evaluation of Drilled Shafts,” Journal of Geotechnical and EnvironmentalEngineering, ASCE, Vol. 124, No. 10, Oct., pp. 965-975 (1998).
29. Hartung, M., Meier, K., and Rodatz, W., “Integrity Testing on Model Piles,”Proceedings of the 4th International Conference on the Application of Stress-Wave Theory to Piles, The Hague, the Nertherlands, pp. 265-269 (1992).
30. Higgs, J., “Integrity Testing of Piles by Shock Method,” Concrete, October, pp. 31-33 (1979).
31. Kim, D.S., Kim, H.W., and Kim, W.C., “Parametric Study on The Impact-Echo Method Using Mock-Up Shafts,” NDT&E International, pp. 595-608 (2002).
32. Liao, S.T., Nondestructive Testing of Piles, PhD. Dissertation, Department of Civil Engineering, University of Texas, Austin, Texas(1994).
33. Liao, S.T., and Roesset, J.M., “Dynamic Response of Intact Piles to Impulse Loads,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 21, pp. 255-275 (1997).
34. Lin, Y., Sanalone, M., and Carino, N.J., “Impact Echo Response of Concrete Shafts,” Geotechnical Testing Journal, GTJODJ, Vol. 14, No. 2, June, pp. 121-137 (1991).
35. Malhotra, V.M., “Testing Hardened Concrete:Nondestructive Methods,” Iowa State University Press, Ames, Iowa, and American Concrete Institute, Detroit, Michigan, pp. 87 (1976).
36. Matlab Wavelet Toolbox Manual Version 2.2.
37. Michael, W.F., An Introduction to Wavelets through Linear Algebra, Springer-Verlag, New York, Inc. (1999).
38. Qian, S., Introduction to Time-Frequency and Wavelet Transforms, Prentice Hall PTR Prentice-Hall, Inc. (2002).
39. Rosset, J.M., and Angelides, D.C., “Dynamic Stiffness of Piles, Numerical Method in Offshore Piling,” Institution of Civil Engineering, London, pp. 75-81 (1980).
40. Schellingerhout, A.J.G., “Quantifying Pile Defects by Integrity Testing,” Proceedings of the Fourth International Conference on the Application of Stress Wave Theory to Piles, Baldema, Rotterdam, Brookfield, September, pp. 319-324 (1992).
41. Stain, R.T., “Integrity Testing,” Civil Engineering, London, April, pp. 53-59 (1982).
42. Steinbach, J., and Veye, E., “Caisson Evaluation by Stress Wave Propagation Method,” Journal of Geotechnical Engineering Division, ASCE, Vol.101, No.GT4, pp. 361-387 (1975).
43. Zerwer, A., Cascante, G., and Hutchinson, J., “Parameter Estimation in Finite Element Simulations of Rayleigh Waves,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 128, No. 3, March, pp. 250-261 (2002).