| 研究生: |
程法彥 Cheng, Fa Yen |
|---|---|
| 論文名稱: |
單拍陰影疊紋表面形貌量測系統之研發 Development of a One-Shot Shadow Moiré System for Surface Profile Measurement |
| 指導教授: |
陳元方
Chen, Terry Yuan-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 陰影疊紋法 、螺旋正交轉換 、單拍 、光流法 |
| 外文關鍵詞: | shadow moiré, spiral phase quadrature transform, one-shot, optical flow |
| 相關次數: | 點閱:81 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文將光流法及螺旋正交轉換應用於陰影疊紋法中,設計一套能動態量測的單拍陰影疊紋表面形貌量測系統,其架設是將傳統相位移法中的設置更改為兩組不同色的光源,利用彩色相機擷取兩組不同顏色的條紋圖,再利用光流法及螺旋正交轉換計算出相位差90度的條紋圖,進而計算條紋相位,經由相位展開法得到相位值,最後得到試件的表面形貌。本文分為模擬與實驗兩個部分,在模擬部分利用陰影疊紋法理論探討兩組疊紋圖的相位差與燈源位置的關係,進而訂定系統量測的最大高度限制並提出超過最大高度限制時的解決方案,當超過最大高度限制時條紋方向角會差180度,將超出位置條紋方向角補上180度則能解決該問題,再利用模擬多種表面形貌在三組不同光源入射角的光源組合的量測結果,藉此決定出最適合的光源入射角為45度,實驗部分則是比較兩種能減少不同光源的光強影響的影像處理方法,並與SMS粗度儀量測比較本系統的準確性,平均誤差為6.1μm,誤差標準差5.1μm。
In this paper, the optical flow method and spiral quadrature transformation are applied to the shadow moiré method. One shot shadow moiré surface profile measurement system capable of dynamic measurement is designed. This system is built on setup of traditional phase-shift system. Original light source is replaced by two polychromatic light sources. Capture two sets of fringe patterns of different colors by color camera, and then the fringe pattern with a phase difference of 90 degrees is calculated by optical flow method and spiral quadrature transform. Two 90 degrees pattern can calculate the fringe phase, and the phase vale can be obtained by the phase unwrapping method. Finally the unwrapping phase can calculate the surface profile of the specimen.
This paper is divided into two parts: simulation and experiment. In the simulation part, the relationship between the phase difference of the two sets of moiré patterns and the position of the light source is discussed by theory of shadow moiré method, and then the maximum height limit of the system measurement is set and a solution that exceeds the maximum height limit is proposed. When the maximum height limit is exceeded, the fringe orientation angle will different 180 degrees. So the position exceeded the limit adds 180 degrees can solve the problem. Then simulating multiple surface profile in three different sets of light source incident angles. The measurement result of the light source combination determines the most suitable light source incident angle is 45 degrees. The experimental part compares two image processing methods that can reduce the influence of light intensity of different light sources, and measures with the SMS roughness meter. Comparing the result of the system, the average error is 6.1 μm and the error standard deviation is 5.1 μm.
1. Kwon, Y., Danyluk, S., Bucciarelli, L., Kalejs, J. P., Residual stress measurement in silicon sheet by shadow moiré interferometry. Journal of Crystal Growth, 1987. 82(1): p. 221-227.
2. Schwarz, R., determination of out‐of‐plane displacemeents and the initiation of buckling in composite structural elements. Experimental Techniques, 1988. 12(1): p. 23-28.
3. Stiteler, M.R., C. Ume, and B. Leutz. In-process board warpage measurement in a lab scale wave soldering oven. in Electronic Components and Technology Conference, 1996. Proceedings., 46th. 1996. IEEE:p. 247-254.
4. Wang, W.-C. and Y.-W. Liu. Measurement of warpage of electronic packaging after machining by phase-shifting shadow moire method. in Third International Conference on Experimental Mechanics. 2002. International Society for Optics and Photonics:p. 20-24.
5. Chen, K.S., Chen, T.Y., Chuang, J.C. and Lin, I.K.,Full-field Wafer Level Thin Film Stress Measurement by Phase-Stepping Shadow Moire, IEEE Trans. CMPT, Vol.27, No.3, 2004.09,p.594-601.
6. Gómez-Pedrero, J.A., Quiroga, Juan A., José Terrón-López, M., Crespo, Daniel., Measurement of surface topography by RGB Shadow-Moiré with direct phase demodulation. Optics and Lasers in Engineering, 2006. 44(12): p. 1297-1310.
7. X. F. Meng, X. Peng, L. Z. Cai, A. M. Li, J. P. Guo, and Y. R. Wang, Wavefront reconstruction and three-dimensional shape measurement by two-step dc-term-suppressed phase-shifted intensities, Opt. Lett, 2009. 34: p. 1210-1212.
8. Larkin, K.G., Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform. Journal of the Optical Society of America A, 2001. 18(8): p. 1871-1881.
9. Larkin, K.G., D.J. Bone, and M.A. Oldfield, Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. Journal of the Optical Society of America A, 2001. 18(8): p. 1862-1870.
10. Felsberg, M. and G. Sommer, The monogenic signal. IEEE Transactions on Signal Processing, 2001. 49(12): p. 3136-3144.
11. Aragonda, H. and C.S. Seelamantula. Quadrature approximation properties of the spiral-phase quadrature transform. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011:p. 1389-1392.
12. Vargas, J., Quiroga, J. Antonio., Sorzano, C. O. S., Estrada, J. C. Carazo, J. M., Two-step interferometry by a regularized optical flow algorithm. Optics Letters, 2011. 36(17): p. 3485-3487.
13. Seelamantula, C.S., Pavillon, Nicolas., Depeursinge, Christian., Unser, Michael., Local demodulation of holograms using the Riesz transform with application to microscopy. Journal of the Optical Society of America A, 2012. 29(10): p. 2118-2129.
14. Du, H., H. Zhao, and B. Li. Fast phase shifting shadow moiré by utilizing multiple light sources. SPIE Advanced Lithography, 2013. International Society for Optics and Photonics:p. 1-7.
15. S. Kale, K. Ramesh, Advancing front scanning approach for three-fringe photoelasticity. Optics and Lasers in Engineering, 2013. 51. 5:p. 592-599
16. Xu, J. and J. Gao, Phase Extraction by Spiral Phase Transform in Digital Shearography, Fringe 2013: 7th International Workshop on Advanced Optical Imaging and Metrology, W. Osten, Editor. 2014, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 217-220.
17. Zhou Xian, Du Hu-bing, Wang Jian-hua. Two Frame Phase Shifting Shadow Moiré Using the Method of Varying Light Source. Acta Photonica Sinica, 2016, 45(2): 0212003.
18. 李家成, 單拍陰影疊紋法於表面形貌量測之研究, in 機械工程學系碩士班. 2017國立成功大學: 台南市. p. 10-32.
19. 鄭仲豪, 應用相位移陰影疊紋量測高溫下晶圓的變形, in 機械工程學系碩博士班. 2002, 國立成功大學: 台南市. p. 71.
20. Quiroga, J.A., Gómez-Pedrero, José A., and Botella Á.G., Algorithm for fringe pattern normalization. Optics Communications, 2001. 197(1-3): p. 43-51.
21. Hariharan, P., B.F. Oreb, and T. Eiju, Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm. Applied Optics, 1987. 26(13): p. 2504-2506.
22. Quiroga, J.A., Gómez-Pedrero, José A., Terrón-López, M. José., Servin, Manuel., Temporal demodulation of fringe patterns with sensitivity change. Optics Communications, 2005. 253(4–6): p. 266-275.
23. Bleistein, N. and R.A. Handelsman, Asymptotic expansions of integrals. 1975: Courier Corporation.
24. Horn, B.K.P. and B.G. Schunck, Determining optical flow. Artificial Intelligence, 1981. 17(1): p. 185-203.
25. Macy, W.W., Two-dimensional fringe-pattern analysis. Applied Optics, 1983. 22(23): p. 3898-3901.
26. Bracewell, R.N. and R.N. Bracewell, The Fourier transform and its applications. 1986: McGraw-Hill New York.
27. Stamnes, J.J., Waves in focal regions. Adam Hilger, Bristol, 1986.
28. Gonzalez, Rafael C., and Richard E. Woods. Digital image processing prentice hall. Upper Saddle River, NJ (2002).
29. 劉諭勳, 影用陰影疊紋法量測電子元件翹曲量及系統升溫校正, in 機械工程學系碩士班. 2016國立成功大學: 台南市. p. 14-16.