簡易檢索 / 詳目顯示

研究生: 張宇硯
Chang, Yu-Yen
論文名稱: 簡易平流冷卻吸積流模型及其應用
Simplified Advection-Dominated Accretion Flow Model and It's Application
指導教授: 游輝樟
Yo, Hwei-Jang
共同指導教授: 卜宏毅
Pu, Hung-Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 34
中文關鍵詞: 吸積吸積盤黑洞物理學流體力學
外文關鍵詞: accretion, accretion disks, black hole physics, hydrodynamics
相關次數: 點閱:123下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在嘗試以平流冷卻吸積流來建立黑洞吸積模型時,人們往往會去尋找全域解。然而,
    由於吸積流跨音速的特性,即使在牛頓力學的表述下,計算全域解仍然相當棘手。
    從前人的工作得知,我們可以用一個簡單的代數關係(吸積流角速度正比於克卜勒角
    速度) 來替代吸積流的徑向動量守恆方程且不會造成太多誤差,這個操作可以大幅度
    降低方程組的複雜度。在這篇文章中,我們嘗試計算簡化後的方程組來得到近似的
    全域解,並探討吸積流的物理性質及這樣的解如何被不同的輻射冷卻機制及吸積盤
    風造成的質量流失影響。

    At low accretion rate, the accretion flow around a black hole can be described by the type of advection-dominated accretion flow (ADAF). Due to the transonic nature of the flow and the unknown position of the sonic point, solving global solution for an ADAF is a challenging task. Taking into account the self-similar behavior of the flow, it is possible to simplify the radial component of momentum conservative equation with physical motivated algebraic relation between flow angular momentum and Keplerian angular momentum. In this thesis, we solve the previously proposed simplified ADAF equations in Pseudo-Newtonian potential for approximate global solution, and explore the properties of accretion flow and how the solution may vary with the effect of radiative cooling mechanisms and mass loss due to the disk wind.

    摘要i Abstract ii 誌謝iii Table of Contents iv List of Figures vi Nomenclature vii Chapter 1. Introduction 1 Chapter 2. Advection-Dominated Accretion Flow Model 3 2.1. Physical Assumption 3 2.2. Basic Equations 4 2.2.1. Mass Conservation 4 2.2.2. Radial Momentum Conservation 5 2.2.3. Azimuthal Momentum Conservation 6 2.2.4. Energy Conservation 8 2.3. Self-Similar Solution 11 2.4. Radiation Mechanism 12 2.4.1. Synchrotron Cooling 14 2.4.2. Bremsstrahlung Cooling 14 2.4.3. Inverse Compton Scattering 15 Chapter 3. Sonic-Point Problem and Method of Simplication 17 3.1. The Transonic Nature of Accretion Flow 17 3.2. Method of Simplication and Approximate Global Solution 18 Chapter 4. Numerical Results: Validation 20 4.1. Case I: α = 0.1, f0 = 0.33, j = 1.08 GMc−1, ˙M = 10−3 ˙MEdd, β = 0.5 21 4.2. Case II: α = 0.3, f0 = 0.33, j = 0.98 GMc−1, ˙M = 10−5 ˙MEdd, β = 0.5 23 4.3. Case I & Case II but with β = 0.9 24 Chapter 5. Numerical Results: Applications and Discussion 26 5.1. Contribution of Different Energy Transfer Mechanisms 26 5.2. Contribution of Different Radiative Cooling Mechanisms 27 5.3. The Optical Depth of an ADAF: Frequency Dependence 28 5.4. Effect of The Outflows 30 Chapter 6. Summary 32 References 33

    Balbus, S. A., & Hawley, J. F. (1991, July). A Powerful Local Shear Instability in Weakly
    Magnetized Disks. I. Linear Analysis. ApJ, 376, 214. doi: 10.1086/170270

    Blandford, R. D., & Begelman, M. C. (1999, February). On the fate of gas accreting at a low rate on to a black hole. MNRAS, 303(1), L1-L5. doi: 10.1046/j.1365-8711.1999
    .02358.x

    Chandrasekhar, S. (1939). An introduction to the study of stellar structure.

    Dermer, C. D., Liang, E. P., & Canfield, E. (1991, March). Luminosity Enhancement Factor for Thermal Comptonization and the Electron Energy Balance. ApJ, 369, 410. doi: 10.1086/169770

    Esin, A. A., McClintock, J. E., & Narayan, R. (1997, November). Advection-Dominated
    Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova
    Muscae 1991. ApJ, 489(2), 865-889. doi: 10.1086/304829

    Esin, A. A., Narayan, R., Ostriker, E., & Yi, I. (1996, July). Hot One-Temperature Accretion Flows around Black Holes. ApJ, 465, 312. doi: 10.1086/177421

    Event Horizon Telescope Collaboration. (2019, April). First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. ApJL, 875(1), L1. doi: 10.3847/2041-8213/ab0ec7

    Event Horizon Telescope Collaboration. (2022, May). First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. ApJL, 930(2), L12. doi: 10.3847/2041-8213/ac6674

    Hawley, J. F. (2000, January). Global Magnetohydrodynamical Simulations of Accretion Tori. ApJ, 528(1), 462-479. doi: 10.1086/308180

    Kato, S., Fukue, J., & Mineshige, S. (2008). Black-Hole Accretion Disks — Towards a New Paradigm —.

    Mahadevan, R., Narayan, R., & Yi, I. (1996, July). Harmony in Electrons: Cyclotron and Synchrotron Emission by Thermal Electrons in a Magnetic Field. ApJ, 465, 327. doi: 10.1086/177422

    Manmoto, T., Mineshige, S., & Kusunose, M. (1997, November). Spectrum of Optically Thin Advection-dominated Accretion Flow around a Black Hole: Application to Sagittarius A*. ApJ, 489(2), 791-803. doi: 10.1086/304817

    Nakamura, K. E., Matsumoto, R., Kusunose, M., & Kato, S. (1996, October). Global Structures of Advection-Dominated Two-Temperature Accretion Disks. PASJ, 48, 761-769. doi: 10.1093/pasj/48.5.761

    Narayan, R., Kato, S., & Honma, F. (1997, February). Global Structure and Dynamics of Advection-dominated Accretion Flows around Black Holes. ApJ, 476(1), 49-60. doi: 10.1086/303591

    Narayan, R., & Yi, I. (1994, June). Advection-dominated Accretion: A Self-similar Solution. ApJL, 428, L13. doi: 10.1086/187381

    Narayan, R., & Yi, I. (1995a, May). Advection-dominated Accretion: Self-Similarity and Bipolar Outflows. ApJ, 444, 231. doi: 10.1086/175599

    Narayan, R., & Yi, I. (1995b, October). Advection-dominated Accretion: Underfed Black Holes and Neutron Stars. ApJ, 452, 710. doi: 10.1086/176343

    Paczyńsky, B., & Wiita, P. J. (1980, August). Thick Accretion Disks and Supercritical
    Luminosities. A & A, 88, 23.

    Remillard, R. A., & McClintock, J. E. (2006, September). X-Ray Properties of Black-Hole Binaries. ARAA, 44(1), 49-92. doi: 10.1146/annurev.astro.44.051905.092532

    Rybicki, G. B., & Lightman, A. P. (1979). Radiative processes in astrophysics.

    Shakura, N. I., & Sunyaev, R. A. (1973, January). Black holes in binary systems.
    Observational appearance. A & A, 24, 337-355.

    Shapiro, S. L., Lightman, A. P., & Eardley, D. M. (1976, February). A two-temperature
    accretion disk model for Cygnus X-1: structure and spectrum. ApJ, 204, 187-199.
    doi: 10.1086/154162

    Stepney, S., & Guilbert, P. W. (1983, September). Numerical fits to important rates in high temperature astrophysical plasmas. MNRAS, 204, 1269-1277. doi: 10.1093/mnras/ 204.4.1269

    Xie, F.-G., & Yuan, F. (2012, December). Radiative efficiency of hot accretion flows. MNRAS, 427(2), 1580-1586. doi: 10.1111/j.1365-2966.2012.22030.x

    Yuan, F., Ma, R., & Narayan, R. (2008, June). A Simplified Global Solution for an Advection-dominated Accretion Flow. ApJ, 679(2), 984-989. doi: 10.1086/587484

    Yuan, F., & Narayan, R. (2014, August). Hot Accretion Flows Around Black Holes. ARAA, 52, 529-588. doi: 10.1146/annurev-astro-082812-141003

    Yuan, F., Peng, Q., Lu, J.-f., & Wang, J. (2000, July). The Role of the Outer Boundary
    Condition in Accretion Disk Models: Theory and Application. ApJ, 537(1), 236-244.
    doi: 10.1086/309020

    Yuan, F., Wu, M., & Bu, D. (2012, December). Numerical Simulation of Hot Accretion
    Flows. I. A Large Radial Dynamical Range and the Density Profile of Accretion Flow.
    ApJ, 761(2), 129. doi: 10.1088/0004-637X/761/2/129

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE