| 研究生: |
張宇硯 Chang, Yu-Yen |
|---|---|
| 論文名稱: |
簡易平流冷卻吸積流模型及其應用 Simplified Advection-Dominated Accretion Flow Model and It's Application |
| 指導教授: |
游輝樟
Yo, Hwei-Jang |
| 共同指導教授: |
卜宏毅
Pu, Hung-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 34 |
| 中文關鍵詞: | 吸積 、吸積盤 、黑洞物理學 、流體力學 |
| 外文關鍵詞: | accretion, accretion disks, black hole physics, hydrodynamics |
| 相關次數: | 點閱:123 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在嘗試以平流冷卻吸積流來建立黑洞吸積模型時,人們往往會去尋找全域解。然而,
由於吸積流跨音速的特性,即使在牛頓力學的表述下,計算全域解仍然相當棘手。
從前人的工作得知,我們可以用一個簡單的代數關係(吸積流角速度正比於克卜勒角
速度) 來替代吸積流的徑向動量守恆方程且不會造成太多誤差,這個操作可以大幅度
降低方程組的複雜度。在這篇文章中,我們嘗試計算簡化後的方程組來得到近似的
全域解,並探討吸積流的物理性質及這樣的解如何被不同的輻射冷卻機制及吸積盤
風造成的質量流失影響。
At low accretion rate, the accretion flow around a black hole can be described by the type of advection-dominated accretion flow (ADAF). Due to the transonic nature of the flow and the unknown position of the sonic point, solving global solution for an ADAF is a challenging task. Taking into account the self-similar behavior of the flow, it is possible to simplify the radial component of momentum conservative equation with physical motivated algebraic relation between flow angular momentum and Keplerian angular momentum. In this thesis, we solve the previously proposed simplified ADAF equations in Pseudo-Newtonian potential for approximate global solution, and explore the properties of accretion flow and how the solution may vary with the effect of radiative cooling mechanisms and mass loss due to the disk wind.
Balbus, S. A., & Hawley, J. F. (1991, July). A Powerful Local Shear Instability in Weakly
Magnetized Disks. I. Linear Analysis. ApJ, 376, 214. doi: 10.1086/170270
Blandford, R. D., & Begelman, M. C. (1999, February). On the fate of gas accreting at a low rate on to a black hole. MNRAS, 303(1), L1-L5. doi: 10.1046/j.1365-8711.1999
.02358.x
Chandrasekhar, S. (1939). An introduction to the study of stellar structure.
Dermer, C. D., Liang, E. P., & Canfield, E. (1991, March). Luminosity Enhancement Factor for Thermal Comptonization and the Electron Energy Balance. ApJ, 369, 410. doi: 10.1086/169770
Esin, A. A., McClintock, J. E., & Narayan, R. (1997, November). Advection-Dominated
Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova
Muscae 1991. ApJ, 489(2), 865-889. doi: 10.1086/304829
Esin, A. A., Narayan, R., Ostriker, E., & Yi, I. (1996, July). Hot One-Temperature Accretion Flows around Black Holes. ApJ, 465, 312. doi: 10.1086/177421
Event Horizon Telescope Collaboration. (2019, April). First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. ApJL, 875(1), L1. doi: 10.3847/2041-8213/ab0ec7
Event Horizon Telescope Collaboration. (2022, May). First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. ApJL, 930(2), L12. doi: 10.3847/2041-8213/ac6674
Hawley, J. F. (2000, January). Global Magnetohydrodynamical Simulations of Accretion Tori. ApJ, 528(1), 462-479. doi: 10.1086/308180
Kato, S., Fukue, J., & Mineshige, S. (2008). Black-Hole Accretion Disks — Towards a New Paradigm —.
Mahadevan, R., Narayan, R., & Yi, I. (1996, July). Harmony in Electrons: Cyclotron and Synchrotron Emission by Thermal Electrons in a Magnetic Field. ApJ, 465, 327. doi: 10.1086/177422
Manmoto, T., Mineshige, S., & Kusunose, M. (1997, November). Spectrum of Optically Thin Advection-dominated Accretion Flow around a Black Hole: Application to Sagittarius A*. ApJ, 489(2), 791-803. doi: 10.1086/304817
Nakamura, K. E., Matsumoto, R., Kusunose, M., & Kato, S. (1996, October). Global Structures of Advection-Dominated Two-Temperature Accretion Disks. PASJ, 48, 761-769. doi: 10.1093/pasj/48.5.761
Narayan, R., Kato, S., & Honma, F. (1997, February). Global Structure and Dynamics of Advection-dominated Accretion Flows around Black Holes. ApJ, 476(1), 49-60. doi: 10.1086/303591
Narayan, R., & Yi, I. (1994, June). Advection-dominated Accretion: A Self-similar Solution. ApJL, 428, L13. doi: 10.1086/187381
Narayan, R., & Yi, I. (1995a, May). Advection-dominated Accretion: Self-Similarity and Bipolar Outflows. ApJ, 444, 231. doi: 10.1086/175599
Narayan, R., & Yi, I. (1995b, October). Advection-dominated Accretion: Underfed Black Holes and Neutron Stars. ApJ, 452, 710. doi: 10.1086/176343
Paczyńsky, B., & Wiita, P. J. (1980, August). Thick Accretion Disks and Supercritical
Luminosities. A & A, 88, 23.
Remillard, R. A., & McClintock, J. E. (2006, September). X-Ray Properties of Black-Hole Binaries. ARAA, 44(1), 49-92. doi: 10.1146/annurev.astro.44.051905.092532
Rybicki, G. B., & Lightman, A. P. (1979). Radiative processes in astrophysics.
Shakura, N. I., & Sunyaev, R. A. (1973, January). Black holes in binary systems.
Observational appearance. A & A, 24, 337-355.
Shapiro, S. L., Lightman, A. P., & Eardley, D. M. (1976, February). A two-temperature
accretion disk model for Cygnus X-1: structure and spectrum. ApJ, 204, 187-199.
doi: 10.1086/154162
Stepney, S., & Guilbert, P. W. (1983, September). Numerical fits to important rates in high temperature astrophysical plasmas. MNRAS, 204, 1269-1277. doi: 10.1093/mnras/ 204.4.1269
Xie, F.-G., & Yuan, F. (2012, December). Radiative efficiency of hot accretion flows. MNRAS, 427(2), 1580-1586. doi: 10.1111/j.1365-2966.2012.22030.x
Yuan, F., Ma, R., & Narayan, R. (2008, June). A Simplified Global Solution for an Advection-dominated Accretion Flow. ApJ, 679(2), 984-989. doi: 10.1086/587484
Yuan, F., & Narayan, R. (2014, August). Hot Accretion Flows Around Black Holes. ARAA, 52, 529-588. doi: 10.1146/annurev-astro-082812-141003
Yuan, F., Peng, Q., Lu, J.-f., & Wang, J. (2000, July). The Role of the Outer Boundary
Condition in Accretion Disk Models: Theory and Application. ApJ, 537(1), 236-244.
doi: 10.1086/309020
Yuan, F., Wu, M., & Bu, D. (2012, December). Numerical Simulation of Hot Accretion
Flows. I. A Large Radial Dynamical Range and the Density Profile of Accretion Flow.
ApJ, 761(2), 129. doi: 10.1088/0004-637X/761/2/129