| 研究生: |
李昱璋 Li, Yu-Chang |
|---|---|
| 論文名稱: |
有機高分子場效電晶體元件之製程與特性研究 The fabrication and characterization of MOSFET device based on the conjugated polymer |
| 指導教授: |
王永和
Wang, Yeong-Her 洪茂峰 Houng, Mau-Phon 溫添進 Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 有機電解質 、有機高分子 |
| 外文關鍵詞: | polymer electrolyte, top contact, polymer |
| 相關次數: | 點閱:64 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
我們嘗試著用不同的材料,包括有機高分子PDMA及PDDA;電解質PEO-LiClO4及PDDA摻雜運用;有機溶夜PEDOT:PSS + PEI 來製作電晶體,這些材料在有機電晶體的應用上尚屬少見。
本論文中,電晶體的製作主要是利用top contact的結構來完成。而在所有的材料所做成的元件中,以PDPA當通道層(channel layer)並以PDDA當摻雜層的元件,其表現最為優越已有電晶體的特性出現,並且其電流值可達上百μ安培,以高分子電晶體而言,算是相當大的一個電流值。但似乎會因電壓太大而有缺陷產生,導致沒有pinch off的特性。
目前的有機小分子或是高分子材料皆怕水氧,通常都在充滿氮氣的環境下量測元件。在本論文中,元件的量測皆是在室溫及常壓下進行,其元件特性已可達上百μ安培的電流值,若能在氮氣的環境中量測,其元件應能有更好的特性表現。
Abstract
Organic thin film transistors fabricated by polymer PDMA , PDDA, polymer electrolyte PEO-LiClO4 or PDDA and polymer solution PEDOT:PSS mixed with PEI are reported.
In this thesis, the top contact structure is used for device fabrication. The devices containing polymer electrolyte PDDA and polymer PDPA as the channel layer show the better device performance. The drain current can reach at high as 135 μA at atmosphere environments. However, devices can’t show the “pinch-off” behavior for VDS larger than 40V due to the defects induced leakage current.
1. M. Halik, H. Klauk, U. Zschieschang, T. Kriem, G. Schmid, W. Radlik, and K. Wussow, Appl. Phys. Lett. 81, 289 (2002); U. Zschieschang, H. Klauk, M. Halik, G. Schmid, and C. Dehm, Adv. Mater. 15, 1147 (2003).
2. J. Zhang, J. Wang, H. Wang, and D. Yan, Appl. Phys. Lett. 84, 142 (2004); B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshakar, H. E. Katz, and W. Li, Nature (London) 403, 521 (2000).
3. X. L. Chen, Z. Bao, J. H. Schon, A. J. Lovinger, Y. Y. Lin, B. C. A. Dodabalpur, and B. Batlogg, Appl. Phys. Lett. 8, 228 (2001).
4. C. H. Chen, J. Shi, and C. W. Tang, Macromol. Symp. 125, 1 (1997); S. A. VanSlyke, and C. W. Tang, U. S. Patent No. 5. 061 569, 1991; C. Adachi, K. Nagai, and N. Tamoto, Appl. Phys. Lett. 66, 2679 (1995).
5. C. Giebler, H. Antoniadis, D. D. C. Bradley, and Y. Shirota, J. Appl. Phys. 85, 608 (1999); S. Tokito, H. Tanaka, N. Koda, A. Okada, and Y. Taga, Macromol. Symp. 125, 181 (1997).
6. A. R. Brown, D. M. Deleeuw, E. E. Havinga, and A. Pomp, Synth. Met. 68, 65 (1994).
7. D. Nilsson, M. Chen, T. Kugler, T. Remonen, M. Armgarth, and M. Berggren, Adv. Mater. 14, 51 (2002).
8. M. Chen, D. Nisson, T. Kugler, and M. Berggren, Appl. Phys. Lett. 81, 2011 (2202).
9. F. M. Gray, Solid Polymer Electrolytes: Fundamentals and Technological Applications (VCH Publications, New York, 1991).
10. T. T. Wooster, M. L. Longmire, H. Zhang, M. Watanabe, and R. W. Murray, Anal. Chem. 64, 1132 (1992).
11. S. Chao, and M. S. Wrighton, J. Am. Chem. Soc. 109, 2197 (1987).
12. D. R. Talham, R. M. Crooks, V. Cammarata, N. Leventis, M. O. Schloh, and M. S. Wrighton, NATO ASI Ser., Ser. B 248, 627 (1990).
13. H. Benisty, and J. N. Chazalviel, J. Electrochem. Soc. 140, 1949 (1993).
14. .C. Lu, Q. Fu, S. Huang, and J. Liu, Nano Lett. 4, 623 (2004).
15. G. P. Siddons, D. Merchin, J. H. Back, J. K. Jeong, and M. Shim, Nano Lett. 4, 927 (2004).
16. M. J. Panzer, C. R. Newman, and C. D. Frisbie, Appl. Phys. Lett. 86, 103503 (2005).
17. V. N. Prigodin, and A. J. Epstein, Synth Met., 125, 43 (2002).
18. A. J. Epstein, F. C. Hsu, N. R. Chion, and V. N. Prigodin, Current Appl. Phys. 2, 339 (2002).
19. J. W. Thackeray, H. S. White, and M. S. Wrighton, J. Phys. Chem. 89, 5133 (1985).
20. Z. Bao, and A. J. Lovinger, Chem. Mater. 11, 2607 (1999).
21. H. Aziz, Z. Popovic, S. Xie, A. –M. Hor, N. –X. Hu, C. Tripp, and G. Xu, Appl. Phys. Lett. 72, 756 (1998).
22. H. Aziz, Z. Popovic, C. Tripp, N. –X. Hu , A. –M. Hor, , and G. Xu, Appl. Phys. Lett. 72, 2642 (1998).
23. Y. Qie, Y. Hu, G. Dong, L. Wang, J. Xie, and Y. Ma, Appl. Phys. Lett. 83, 1644 (2003).