簡易檢索 / 詳目顯示

研究生: 黃信智
Huang, Sin-Jhih
論文名稱: 具雙覆蓋層結構氧化銦鎵鋅薄膜電晶體與場效應二極體於改善紫外光感測器感測特性之研究
Enhanced sensing performance of ultraviolet photodetectors based on IGZO thin film transistor and field effect diodes with double capping layer
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 113
中文關鍵詞: 薄膜電晶體場效應二極體氧化銦鎵鋅氧化鎳覆蓋層紫外光感測器
外文關鍵詞: thin film transistors (TFTs), field effect diodes (FEDs), IGZO, NiO, capping layer, ultraviolet photodetectors (UV-PDs)
相關次數: 點閱:46下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研製具優異電性與感光特性之氧化銦鎵鋅(IGZO)薄膜電晶體(Thin film transistors, TFTs)與場效應二極體(field-effect diodes, FEDs)及其於紫外光感測器(ultraviolet photodetectors, UV-PDs)之應用。透過先後沉積鉑(Pt)與氧化鎳(NiO)於TFT背通道表面作為雙覆蓋層結構(Double capping layer, DCL),一方面利用Pt之高功函數(5.65 eV)與n型通道形成蕭基接面(Schottky contact),藉此增強通道層之全空乏(fully depletion)程度,進一步抑制暗電流(I_dark);另一方面藉由NiO與通道形成之pn異質接面(heterojunction, HJ),於照光下將其空乏區產生之光生載子注入通道,提升通道載子濃度及降低臨界電壓以增加光電流。另外,本研究透過將TFT使用二極體連接方式製備FED,比較兩者於光響應性能與可靠度之優劣。
    於實驗中,所有元件皆使用等效氧化層厚度(equivalent oxide thickness, EOT)為10 nm之(氧化矽鉿) Hf0.82Si0.18O閘極介電層。TFTs (W/L=200 m/50 m)依CL結構分為without CL/NiO CL/Pt CL/DCL四類,採用射頻(RF)濺鍍製備IGZO通道層和NiO CL以及使用電子束蒸鍍製備Pt CL。本研究係使用波長為275-400 nm與功率為1.25 mW/cm2之UV光照射進行元件之光響應特性分析。透過光響應度(R_ph)、光靈敏度(S_ph)與檢測率(D^*)等參數,探討IGZO通道層和CL結構參數與UV光響應特性之折衷關係,製備最適化之TFT UV-PDs元件結構。並透過金屬連接線將元件之汲極與閘極連接,製備為FED UV-PDs元件結構,並與對應TFT之光電特性與元件可靠度進行比較。此外,動態光響應行為上,IGZO通道層中之氧空缺容易造成持續光電導(persistent photoconductivity, PPC)效應,本研究採用一正值之閘極脈衝使元件導通,透過外部電路將殘餘之光生載子清除,從而充分消除PPC現象。
    本論文研究內容主要分為「IGZO TFT操作原理及TFT元件光電特性分析」、「DCL結構於IGZO TFT UV-PDs之光電特性改善」與「DCL IGZO TFT與FED UV-PDs之可靠度分析」三大部分,茲依序分述如下:
    第一部份於「IGZO TFT操作原理及TFT元件光電特性分析」之研究,旨在分析通道膜厚(T_ch)對於元件光電特性之影響,TFT屬無接面之電晶體,係透過閘極與通道之功函數差將通道(n型)全空乏,以達到關閉元件之效果。一般而言,TFT元件關閉漏電流(I_off)主要來自於閘極漏電流與通道漏電流,於元件處於全空乏狀態時,I_off幾乎由閘極漏電流主導而最小化;若元件處於部分空乏狀態,元件將會操作於次臨界區導致通道漏電流使I_off大幅提升,由於UV-PDs應用TFT的暗電流(I_Dark)由I_off決定,此將導致光暗電流比大幅下降,不利於光靈敏性及待機功耗之表現。於實驗上係分別以Hf0.82Si0.18O及IGZO作為介電層與通道層,並以氧化鋅鋁(AZO)與鈦(Ti)作為緩衝層與閘極電極金屬,製備具25、30、35與40 nm四種T_ch之TFTs進行光電特性分析。採用較薄通道(25 nm)可以獲得全空乏狀態,雖可使TFT具有較低的I_off,然亦將減少產生光生載子的空間,不利光電流之提升;使用較厚的通道(40 nm)雖可有效地提升元件導通與光響應特性,然亦導致臨界電壓(V_th)大幅負偏移,造成暗電流(I_dark)明顯增大,進而大幅降低UV-PDs的光靈敏度(S_ph)與檢測率(D^*)。
    第二部分於「DCL結構於IGZO TFT UV-PDs之光電特性改善」旨在利用Pt與p-NiO材料於通道上方沉積區域性堆疊DCL,藉此改善元件之光電特性。其中Pt與n型通道形成蕭基接面,並在背通道表面形成空乏區,可允許元件在相同的有效通道厚度(T_che)下,提升主動層厚度,降低串聯電阻與增加照光下光生載子之實空間;NiO與通道形成之pn HJ於照光下可將電子注入通道提升通道載子濃度以增加光電流,且電子濃度提升亦有助於縮小空乏區範圍,增加通道導電性。結合Pt與NiO CL之優勢,以最大化元件之光響應性能。為發揮DCL最大效益,本研究分別對Pt與NiO CL結構參數進行調變,Pt屬不透明之金屬材料,故採用較短Pt CL長度(L_(CL(Pt))= 5、10與15 μm)進行沉積;NiO目的在於增加光生載子整體數量,故採用較長NiO CL長度(L_(CL(NiO))= 20、30與40 μm)進行沉積。Pt CL厚度沉積約10 nm足夠均勻即可,NiO CL厚度則須大於pn HJ空乏區所占範圍並保有一部分中性區,故採用本研究室所製備為80 nm之最佳厚度。所有CL寬度皆與通道寬度相同。在具有相同T_che之無CL (Type A)、具NiO CL (Type B)、具Pt CL (Type C)與具DCL (Type D) IGZO TFT元件光電特性比較下,實驗結果顯示,使用L_(CL(Pt))= 5 μm與L_(CL(NiO))= 40 μm並搭配T_ch= 40 nm之Type D IGZO TFT可得到最佳光響應性能,其光響應性(Photoresponsivity, R_ph)高達1888.07 A/W、光靈敏度(Photosensitivity, S_ph)高達3.37×108 A/A與檢測率(detectivity, D^*)高達3.99×1016 Jones。
    第三部分於「DCL IGZO TFT與FED UV-PDs之可靠度分析」之研究,旨在藉由負偏壓應力(Negative bias stress, NBS)測試上述所製備之IGZO TFTs應用於UV-PDs之穩定度,並加入對應之IGZO FEDs進行比較,並透過一週期性("T"="10 s" ) UV光照射(λ="275 nm" ,功率為"1.25 mW"/〖"cm" 〗^"2" )分析其動態光響應行為下之PPC效應。實驗結果顯示,相較於傳統結構之Type A TFT,通道增厚的Type D TFT臨界電壓偏移量(∆V_th)與汲極電流偏移量(∆I_D)於1000 s的NBS測試後,分別降低約55%與83%。值得注意的是,相較於Type D TFT,其對應之Type D FED的∆I_D於1000 s NBS測試後可進一步下降27%。FED較TFT具高可靠度之原因,主要歸因於閘極介電層所承受之電場強度較對應之TFT小,減少整體電特性受偏壓應力的改變。於動態光響應行為上,Type A與D TFTs皆發生明顯的PPC現象,上升時間(τ_r)/下降時間(τ_f)分別為0.99 s/2.32 s與1.04 s/3.15 s,為減輕PPC的現象,利用一30 ms的閘極脈衝(V_G= 4 V)可充分消除PPC現象,Type A與D TFT之τ_f分別降為0.17 s與0.23 s。
    本論文提出以DCL覆蓋於IGZO TFTs背通道表面,有效提升元件於UV-PDs應用上的光感測性能,Type D TFT於275 nm之UV光照射下,展現出優異的光響應特性,R_ph、S_ph與D^*分別達到1888.07 A/W、3.37×108 A/A與3.99×1016 Jones。並藉由將閘極與汲極連接之FED偏壓條件降低介電層所承受之電場強度,相較於TFT有更好的穩定性,並可使用單一電源操作。具有傳統TFT製程簡易、成本低廉及可大面積製備之優勢,僅須透過簡易沉積製程可獲得大量光感測性能提升,以及使用簡單電路連接可增加元件穩定性,預計於未來在光感測器之應用將極具潛力。

    SUMMARY
    In this study, the thin film transistors (TFTs) and field effect diodes (FEDs) with IGZO channel layer and double capping layer (DCL) for the application of ultraviolet photodetectors (UV-PDs) are proposed. The influence of IGZO channel thickness and capping layer (CL) structure on the photoelectric characteristics of TFT is discussed. Experimental results show that the TFT fabricated with a channel thickness (T_ch) of 40 nm and DCL (Pt/NiO) exhibits superior detection performance with R_ph of 1888.07 A/W, S_ph of 2.97×108 A/A, and D^* of 3.58×1016 Jones, respectively. It is attributed to the NiO/IGZO pn HJ contribute a considerable number of photogenerated electrons during UV light irradiation, and Pt CL to increase the T_ch to increase the space for the photogenerated carriers. In addition, the FEDs demonstrate better stability with a less variation of the drain current (∆I_D) as compared to the corresponding TFTs, which due to the low average dielectric electrical field intensity in the FEDs

    中文摘要 I SUMMARY VI 誌謝 XIV 目錄 XVI 表目錄 XX 圖目錄 XXII 第1章 緒論 1 1-1 紫外光感測器(UV-PDs)之介紹與發展 1 1-1-1 光二極體之操作原理 2 1-1-2 光電晶體之操作原理 4 1-1-3 背通道覆蓋層(CL)於TFT UV-PDs之應用 7 1-2 IGZO材料發展與介紹 9 1-3 NiO材料發展與介紹 12 1-4 場效應二極體(FED)元件及其應用簡介 14 1-5 研究動機 15 第2章 研究理論背景 17 2-1 薄膜電晶體(TFT)操作機制 17 2-2 覆蓋層(CL)於IGZO TFTs之操作機制 21 2-2-1 Pt CL操作機制 21 2-2-2 NiO CL操作機制 22 2-2-3 雙覆蓋層結構(DCL)結構設計 23 2-3 場效應二極體(FED)操作方式 24 2-4 UV-PDs光電特性參數萃取 26 2-5 結語 28 第3章 具DCL之IGZO TFT與FED製備流程及量測系統 29 3-1 實驗設備簡介 29 3-1-1 射頻共濺鍍系統簡介 29 3-1-2 電子束蒸鍍系統簡介 30 3-2 IGZO TFT製備流程 32 3-3 DCL與FED製備流程 37 3-4 UV-PDs光電特性量測系統介紹 40 3-5 結語 41 第4章 IGZO與NiO材料分析 42 4-1 XRD薄膜晶體結構分析與霍爾量測 42 4-2 相對介電常數量測 44 4-3 穿透率能隙量測分析 45 4-4 UPS薄膜能帶分析 47 4-5 IGZO/Pt與IGZO/NiO熱平衡能帶圖 49 4-6 結語 51 第5章 通道膜厚於IGZO TFT UV-PDs光電特性之影響 52 5-1 IGZO TFTs元件電特性分析 53 5-2 IGZO TFTs光響應行為分析 56 5-3 結語 60 第6章 具DCL IGZO TFTs與FEDs光電特性分析及可靠度之探討 61 6-1 CL於IGZO TFTs元件光電特性最佳化之研究 62 6-1-1 具NiO CL IGZO TFTs元件光電特性最佳化之研究 63 6-1-2 具Pt CL IGZO TFTs元件光電特性最佳化之研究 67 6-2 具DCL IGZO TFTs與FEDs元件電特性分析 72 6-3 具DCL IGZO TFTs與FEDs光響應行為分析 76 6-4 負偏壓應力可靠度測試 79 6-5 持續光電導(PPC)效應 85 6-6 結語 90 第7章 結論及未來研究之建議 92 7-1 結論 92 7-2 未來研究之建議 98 參考資料 100 附錄 108 附錄A 實驗設備 108 附錄B 期刊、會議論文、研討會 110

    [1] E. Bestelink, H. J. Teng, and R. A. Sporea, "Contact Doping as a Design Strategy for Compact TFT-Based Temperature Sensing," IEEE Trans. Electron Devices, 68(10), 4962-4965 (2021).
    [2] M. Kumar, J.-Y. Park, and H. Seo, "High-performance and self-powered alternating current ultraviolet photodetector for digital communication," ACS Appl. Mater. Interfaces, 13(10), 12241-12249 (2021).
    [3] E. Gorokhov, A. Magunov, V. Feshchenko, and A. Altukhov, "Solar-blind UV flame detector based on natural diamond," Instrum. Exp. Tech., 51(2), 280-283 (2008).
    [4] E. Monroy, F. Omnes, and F. Calle, "Wide-bandgap semiconductor ultraviolet photodetectors," Semicond. Sci. Technol., 18(4), R33-R51 (2003).
    [5] M.-H. Ji, J. Kim, T. Detchprohm, R. D. Dupuis, A. K. Sood, N. K. Dhar, and J. Lewis, "Uniform and reliable GaN pin ultraviolet avalanche photodiode arrays," IEEE Photon. Technol. Lett., 28(19), 2015-2018 (2016).
    [6] C. Pernot, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, and I. Akasaki, "Solar-blind UV photodetectors based on GaN/AlGaN pin photodiodes," Jpn. J. Appl. Phys., 39(5A), L387 (2000).
    [7] L. Su, X. Cai, H. Lu, D. Zhou, W. Xu, D. Chen, F. Ren, R. Zhang, Y. Zheng, and G. Li, "Spatial non-uniform hot carrier luminescence from 4H-SiC pin avalanche photodiodes," IEEE Photon. Technol. Lett., 31(6), 447-450 (2019).
    [8] S. Yang, D. Zhou, H. Lu, D. Chen, F. Ren, R. Zhang, and Y. Zheng, "High-performance 4H-SiC pin ultraviolet photodiode with p layer formed by al implantation," IEEE Photon. Technol. Lett., 28(11), 1189-1192 (2016).
    [9] Y. Duan, M. Cong, D. Jiang, W. Zhang, X. Yang, C. Shan, X. Zhou, M. Li, and Q. Li, "ZnO Thin Film Flexible UV Photodetectors: Regulation on the ZnO/Au Interface by Piezo‐Phototronic Effect and Performance Outcomes," Adv. Mater. Interfaces, 6(16), 1900470 (2019).
    [10] D. Ju, X. Liu, Z. Zhu, S. Wang, S. Liu, Y. Gu, J. Chang, Q. Liu, and Y. Zou, "Solution processed membrane-based wearable ZnO/graphene Schottky UV photodetectors with imaging application," Nat. Nanotechnol., 30(37), 375701 (2019).
    [11] T.-F. Zhang, G.-A. Wu, J.-Z. Wang, Y.-Q. Yu, D.-Y. Zhang, D.-D. Wang, J.-B. Jiang, J.-M. Wang, and L.-B. Luo, "A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction," Nanophotonics, 6(5), 1073-1081 (2017).
    [12] R. Debnath, T. Xie, B. Wen, W. Li, J. Y. Ha, N. F. Sullivan, N. V. Nguyen, and A. Motayed, "A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector," RSC Adv., 5(19), 14646-14652 (2015).
    [13] S. M. Hatch, J. Briscoe, and S. Dunn, "A self‐powered ZnO‐nanorod/CuSCN UV photodetector exhibiting rapid response," Adv. Mater., 25(6), 867-871 (2013).
    [14] M. Patel, H. S. Kim, and J. Kim, "All transparent metal oxide ultraviolet photodetector," Adv. Electron. Mater., 1(11), 1500232 (2015).
    [15] M. Sasar and Y. Abdi, "Fabrication and UV sensitivity of a ZnO decorated NiO thin film field effect transistor," IEEE Electron Device Lett., 40(11), 1764-1767 (2019).
    [16] J. Yoon, G.-Y. Bae, S. Yoo, J. I. Yoo, N.-H. You, W.-K. Hong, and H. C. Ko, "Deep-ultraviolet sensing characteristics of transparent and flexible IGZO thin film transistors," J. Alloys Compd., 817, 152788 (2020).
    [17] M. G. Yun, Y. K. Kim, C. H. Ahn, S. W. Cho, W. J. Kang, H. K. Cho, and Y.-H. Kim, "Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process," Sci. Rep., 6(1), 1-9 (2016).
    [18] J. H. Kim, U. K. Kim, Y. J. Chung, and C. S. Hwang, "Correlation of the change in transfer characteristics with the interfacial trap densities of amorphous In–Ga–Zn–O thin film transistors under light illumination," Appl. Phys. Lett., 98(23), 232102 (2011).
    [19] C.-s. Chiang, S. Martin, J. Kanicki, Y. Ugai, T. Yukawa, and S. Takeuchi, "Top-gate staggered amorphous silicon thin-film transistors: Series resistance and nitride thickness effects," Jpn. J. Appl. Phys., 37(11R), 5914 (1998).
    [20] S. Y. Lee, D. H. Kim, E. Chong, Y. W. Jeon, and D. H. Kim, "Effect of channel thickness on density of states in amorphous InGaZnO thin film transistor," Appl. Phys. Lett., 98(12), 122105 (2011).
    [21] Y. Li, Y. Pei, R. Hu, Z. Chen, Y. Zhao, Z. Shen, B. Fan, J. Liang, and G. Wang, "Effect of channel thickness on electrical performance of amorphous IGZO thin-film transistor with atomic layer deposited alumina oxide dielectric," Curr. Appl. Phys., 14(7), 941-945 (2014).
    [22] J. Y. Choi, S. Kim, D. H. Kim, and S. Y. Lee, "Role of metal capping layer on highly enhanced electrical performance of In-free Si-Zn-Sn-O thin film transistor," Thin Solid Films, 594, 293-298 (2015).
    [23] I. Hwang, J. Kim, M. Lee, M.-W. Lee, H.-J. Kim, H.-I. Kwon, D. K. Hwang, M. Kim, H. Yoon, and Y.-H. Kim, "Wide-spectral/dynamic-range skin-compatible phototransistors enabled by floated heterojunction structures with surface functionalized SWCNTs and amorphous oxide semiconductors," Nanoscale, 9(43), 16711-16721 (2017).
    [24] K. T. Kim, J. Kim, Y. H. Kim, and S. K. Park, "In-Situ Metallic Oxide Capping for High Mobility Solution-Processed Metal-Oxide TFTs," IEEE Electron Device Lett., 35(8), 850-852 (2014).
    [25] B. H. Lee, A. Sohn, S. Kim, and S. Y. Lee, "Mechanism of carrier controllability with metal capping layer on amorphous oxide SiZnSnO semiconductor," Sci. Rep., 9(1), 1-7 (2019).
    [26] J. Y. Lee and S. Y. Lee, "Mechanism of Non-Ideal Transfer Characteristic at Low Drain Voltage in Metal-Capped Amorphous Oxide Thin Film Transistor," IEEE J. Electron Devices Soc., 10, 40-44 (2021).
    [27] H.-J. Na, N.-K. Cho, J. Park, S.-E. Lee, E. G. Lee, C. Im, and Y. S. Kim, "A visible light detector based on a heterojunction phototransistor with a highly stable inorganic CsPbI x Br 3-x perovskite and In-Ga-Zn-O semiconductor double-layer," J. Mater. Chem. C, 7(45), 14223-14231 (2019).
    [28] D. B. Ruan, P. T. Liu, Y. H. Chen, Y. C. Chiu, T. C. Chien, M. C. Yu, K. J. Gan, and S. M. Sze, "Photoresponsivity Enhancement and Extension of the Detection Spectrum for Amorphous Oxide Semiconductor Based Sensors," Adv. Electron. Mater., 5(3), 1800824 (2019).
    [29] M.-G. Shin, K.-H. Bae, H.-S. Cha, H.-S. Jeong, D.-H. Kim, and H.-I. Kwon, "Floating Ni capping for high-mobility p-channel SnO thin-film transistors," Materials, 13(14), 3055 (2020).
    [30] M.-G. Shin, K.-H. Bae, H.-S. Jeong, D.-H. Kim, H.-S. Cha, and H.-I. Kwon, "Effects of capping layers with different metals on electrical performance and stability of p-channel SnO thin-film transistors," Micromachines, 11(10), 917 (2020).
    [31] J. J. Yu, K. Javaid, L. Y. Liang, W. H. Wu, Y. Liang, A. R. Song, H. L. Zhang, W. Shi, T. C. Chang, and H. T. Cao, "High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p-n Heterojunction," ACS Appl. Mater. Interfaces, 10(9), 8102-8109 (2018).
    [32] H. W. Zan, W. T. Chen, C. C. Yeh, H. W. Hsueh, C. C. Tsai, and H. F. Meng, "Dual gate indium-gallium-zinc-oxide thin film transistor with an unisolated floating metal gate for threshold voltage modulation and mobility enhancement," Appl. Phys. Lett., 98(15), 153056 (2011).
    [33] H. W. Zan, C. C. Yeh, H. F. Meng, C. C. Tsai, and L. H. Chen, "Achieving high field‐effect mobility in amorphous indium‐gallium‐zinc oxide by capping a strong reduction layer," Adv. Mater., 24(26), 3509-3514 (2012).
    [34] Ü. Özgür, D. Hofstetter, and H. Morkoc, "ZnO devices and applications: a review of current status and future prospects," Proc. IEEE, 98(7), 1255-1268 (2010).
    [35] Y. Q. Fu, J. Luo, X. Du, A. Flewitt, Y. Li, G. Markx, A. Walton, and W. Milne, "Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review," Sens. Actuators B: Chem., 143(2), 606-619 (2010).
    [36] Y.-B. Hahn, "Zinc oxide nanostructures and their applications," Korean J. Chem. Eng., 28(9), 1797-1813 (2011).
    [37] J.-Y. Kwon, D.-J. Lee, and K.-B. Kim, "Transparent amorphous oxide semiconductor thin film transistor," Electron. Mater. Lett., 7(1), 1-11 (2011).
    [38] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," J. Non-Cryst. Solids, 352(9-20), 851-858 (2006).
    [39] S. Parthiban and J.-Y. Kwon, "Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field effect transistor," J. Mater. Res., 29(15), 1585-1596 (2014).
    [40] D. C. Hays, B. Gila, S. Pearton, and F. Ren, "Energy band offsets of dielectrics on InGaZnO4," Appl. Phys. Rev., 4(2), 021301 (2017).
    [41] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, 432(7016), 488-492 (2004).
    [42] B. Magyari-Köpe, S. G. Park, H.-D. Lee, and Y. Nishi, "First principles calculations of oxygen vacancy-ordering effects in resistance change memory materials incorporating binary transition metal oxides," J. Mater. Sci., 47(21), 7498-7514 (2012).
    [43] D. Adler and J. Feinleib, "Electrical and optical properties of narrow-band materials," Phys. Rev. B, 2(8), 3112-3134 (1970).
    [44] B. Sasi, K. Gopchandran, P. Manoj, P. Koshy, P. P. Rao, and V. Vaidyan, "Preparation of transparent and semiconducting NiO films," Vacuum, 68(2), 149-154 (2002).
    [45] K. Ukoba, A. Eloka-Eboka, and F. Inambao, "Review of nanostructured NiO thin film deposition using the spray pyrolysis technique," Renew. Sustain. Energy Rev., 82, 2900-2915 (2018).
    [46] G. Boschloo and A. Hagfeldt, "Spectroelectrochemistry of nanostructured NiO," J. Phys. Chem. B, 105(15), 3039-3044 (2001).
    [47] B. Razavi, Design of analog CMOS integrated circuits, 2nd ed (2000).
    [48] K. G. Sun, K. S. Choi, and T. N. Jackson, "Low-Power Double-Gate ZnO TFT Active Rectifier," IEEE Electron Device Lett., 37(4), 426-428 (2016).
    [49] T. Kawamura, H. Wakana, K. Fujii, H. Ozaki, K. Watanabe, T. Yamazoe, H. Uchiyama, and K. Torii, "Oxide TFT Rectifier Achieving 13.56-MHz Wireless Operation," IEEE Trans. Electron Devices, 59(11), 3002-3008 (2012).
    [50] D. Y. Kim, S. Park, R. N. Han, and K. O. Kenneth, "Design and Demonstration of 820-GHz Array Using Diode-Connected NMOS Transistors in 130-nm CMOS for Active Imaging," IEEE Trans. Terahertz Sci. Technol., 6(2), 306-317 (2016).
    [51] S. Jun, C. Jo, H. Bae, H. Choi, D. H. Kim, and D. M. Kim, "Unified subthreshold coupling factor technique for surface potential and subgap density-of-states in amorphous thin film transistors," IEEE Electron Device Lett., 34(5), 641-643 (2013).
    [52] R. A. Yotter and D. M. Wilson, "A review of photodetectors for sensing light-emitting reporters in biological systems," IEEE Sens. J., 3(3), 288-303 (2003).
    [53] D. Y. Kim, J. Ryu, J. Manders, J. Lee, and F. So, "Air-Stable, Solution-Processed Oxide p-n Heterojunction Ultraviolet Photodetector," ACS Appl. Mater. Interfaces, 6(3), 1370-1374 (2014).
    [54] Z. D. Huang, W. Y. Weng, S. J. Chang, C. J. Chiu, T. J. Hsueh, and S. L. Wu, "Ga2O3/AlGaN/GaN Heterostructure Ultraviolet Three-Band Photodetector," IEEE Sens. J., 13(9), 3462-3467 (2013).
    [55] P. Sharma, R. Bhardwaj, A. Kumar, and S. Mukherjee, "Trap assisted charge multiplication enhanced photoresponse of Li-P codoped p-ZnO/n-Si heterojunction ultraviolet photodetectors," J. Phys. D, 51(1), 015103 (2018).
    [56] S. M. Sze, Y. Li, and K. K. Ng, Physics of semiconductor devices, 3rd Ed., Wiley Interscience, 2006.
    [57] A. O. M. Alzahrani, M. S. Abdel-wahab, M. Alayash, and M. S. Aida, "Effect of ZnO layer thickness upon optoelectrical properties of NiO/ ZnO heterojunction prepared at room temperature," J. Mater. Sci. Mater. Electron., 29(19), 16317-16324 (2018).
    [58] D. Robinson Brown, M. T. Brumbach, S. Smith, and J. Ihlefeld, "Improving Kelvin probe work function measurement reliability," Sandia National Lab., (2016).
    [59] B.-C. You, S.-J. Wang, R.-M. Ko, J.-H. Wu, and C.-E. Lin, "Enhanced electrical performance and reliability of Ti-IGZO thin-film transistors with Hf1-xAlxO gate dielectrics," Jpn. J. Appl. Phys., 59(SG), SGGJ03 (2020).
    [60] J. M. Choi and S. Im, "Optimum channel thickness of rubrene thin-film transistors," Appl. Phys. Lett., 93(4), 043309 (2008).
    [61] J. P. Campbell, K. P. Cheung, J. S. Suehle, and A. Oates, "A Simple Series Resistance Extraction Methodology for Advanced CMOS Devices," IEEE Electron Device Lett., 32(8), 1047-1049 (2011).
    [62] M. D. H. Chowdhury, P. Migliorato, and J. Jang, "Light induced instabilities in amorphous indium–gallium–zinc–oxide thin-film transistors," Appl. Phys. Lett., 97(17), 173506 (2010).
    [63] S. Lany and A. Zunger, "Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors," Phys. Rev. B, 72(3), 035215 (2005).
    [64] A. Janotti and C. G. Van de Walle, "Oxygen vacancies in ZnO," Appl. Phys. Lett., 87(12), 122102 (2005).
    [65] S. Jeon, S.-E. Ahn, I. Song, C. J. Kim, U.-I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, and K. Ghaffarzadeh, "Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays," Nat. Mater., 11(4), 301-305 (2012).
    [66] T. Han, Y. C. Xu, M. H. Shou, Z. Q. Xie, L. Ying, C. Z. Jiang, H. Y. Wang, S. F. Ding, G. Jin, Q. Liu, X. Y. Huang, and L. L. Liu, "Energy level gradient trapping based on different work functions of ZnO enhancing response and stablity for lateral photodetectors," Org. Electron., 86, 105883 (2020).
    [67] Y. Y. Zhang, L. X. Qian, Z. H. Wu, and X. Z. Liu, "Amorphous InGaMgO Ultraviolet Photo-TFT with Ultrahigh Photosensitivity and Extremely Large Responsivity," Materials, 10(2), 168 (2017).
    [68] W. T. Chen and H. W. Zan, "High-Performance Light-Erasable Memory and Real-Time Ultraviolet Detector Based on Unannealed Indium-Gallium-Zinc-Oxide Thin-Film Transistor," IEEE Electron Device Lett., 33(1), 77-79 (2012).
    [69] H. Ferhati and F. Djeffal, "Giant responsivity of a new InGaZnO ultraviolet thin-film phototransistor based on combined dual gate engineering and surface decorated Ag nanoparticles aspects," Sens. Actuator A Phys., 318, 112523 (2021).
    [70] Z. Y. Han, H. L. Liang, W. X. Huo, X. S. Zhu, X. L. Du, and Z. X. Mei, "Boosted UV Photodetection Performance in Chemically Etched Amorphous Ga2O3 Thin-Film Transistors," Adv. Opt. Mater., 8(8), 1901833 (2020).
    [71] N. P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, and A. L. Khrypunova, "Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell," Sol. Energy, 164, 149-159 (2018).

    下載圖示 校內:2024-09-30公開
    校外:2024-09-30公開
    QR CODE