簡易檢索 / 詳目顯示

研究生: 王佩文
Wamg, Pei-Wen
論文名稱: 複製蛋白RPA2與mRNA轉譯作用抑制蛋白4E-BP3間交互作用之探討
Study on the Interaction between Replication Protein A2 (RPA2) and 4E-BP3, a Repressor of mRNA Translation
指導教授: 張敏政
Chang, Ming-Chung
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學研究所
Department of Biochemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 75
中文關鍵詞: 免疫沈澱交互作用複製蛋白
外文關鍵詞: immunoprecipitation, rapamycin, mTOR, 4E-BP3, RPA2, interaction
相關次數: 點閱:70下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   RPA (replication protein A) 為一單股DNA結合蛋白,普遍存於真核細胞之細胞核中,主要是由RPA1、RPA2及RPA3三個次體組成一穩定複合物,且其功能牽涉到DNA複製、修補以及基因重組等生理反應。主要與單股DNA產生結合能力的為RPA1,而RPA2則是當細胞進入S phase時,會有磷酸化的現象產生,直到M phase的晚期才去磷酸。若是當細胞遭受到紫外光 (UV) 、游離輻射 (IR) 的照射,或是施以DNA複製抑制劑而對細胞造成損傷時,RPA2則會有高度磷酸化現象的發生。而產生磷酸化的部位主要是位於RPA2的N端33-40個胺基酸,若將此部位製造突變或增加負電荷中和的話,會改變RPA2與p53或DNA polymerase α/DNA primase的結合關係。為了探討RPA2在細胞中及其在生理上可能扮演之角色,因此本實驗室利用Yeast-two hybrid之方法從人類乳腺細胞基因庫中篩選與RPA2到有較交互作用之蛋白有:L5、Tyro3和4E-BP3,而本論文主要為探討4E-BP3與RPA2間之交互作用。4E-BP3,已知屬於4E-BPs (eIF4E-binding proteins) 家族之一員,其分子量大小約為14.6 kDa,磷酸化的型態會與eIF4G競爭eIF4E的結合位置,使得cap-mRNA無法帶入43S pre-initiation complex,進而抑制住轉譯的速率,對於細胞生長有負向調節的功能。因此,首先利用免疫沈澱的方法,確認了RPA2和4EBP3無論在in vitro或是in vivo下皆有交互作用的關係存在,並且以m7-GTP sepharose沈澱法確認RPA2/4E-BP3的交互作用並不參與在eIF4E/4E-BP3的關係之中。接著則使用TnT quick coupled transcription/translation kit在in vitro的情形下,分別表現出截短三大特殊功能區的RPA2片段,由免疫沈澱分析的結果可以推測RPA2和4E-BP3之交互結合位置應位於RPA2之N端第1~45個胺基酸區域,即RPA2磷酸化之區域。另外,我們也在HEK293中建立了一會持續穩定表現4E-BP3蛋白的細胞株 (SBP3) 。以此細胞株去分析4E-BP3對於細胞生長速率和表現型的影響,由文獻探討發現,暫時轉染表現4E-BP1蛋白入U20S細胞,除了會使得細胞的生長速率減緩,也會減少細胞體積大小約10%左右。而根據我們的實驗觀察發現4E-BP3在HEK293細胞中穩定表現,會使得細胞生長速率變慢約50%左右;但在細胞型態上,卻反而會使得細胞生長的體積增加。再加上以去除生長因子 (starvation) ,以及rapamycin的刺激來觀測4E-BP3的磷酸化的情形以及eIF4E/4E-BP3交互作用的關係發現:當細胞去除生長因子時,4E-BP3的磷酸化會減少,與eIF4E的結合能力也相對的減少;反之以rapamycin刺激後4E-BP3的磷酸化情形卻是增加,與eIF4E的結合能力也相對的增加。因此由以上結果推論,對於調控4E-BP3磷酸化的訊息傳遞路徑,是否並非與4E-BP1、4E-BP2的調控路徑同樣是PI3K/Akt/mTOR訊息傳遞路徑,或是其調控的方式與4E-BP1、4E-BP2相反,為4E-BP3產生磷酸化時才會與eIF4E結合,值得令人進一步的去探討。另一方面則是探討RPA2/4E-BP3兩著間交互作用的關係,同樣以去除細胞生長因子 (starvation) 或加入rapamycin刺激細胞 觀察RPA/4E-BP3間的交互作用,發現兩者間的交互作用似乎與4E-BP3磷酸化與否並無相關。再加上in vitro免疫沈澱的結果指出,RPA2與4E-BP3產生交互作用的位置座落於RPA2之N端磷酸化部位,以及實驗室之前發現利用細胞受曝曬高劑量 (50 J/m2) 紫外光之刺激模式,會造成原本在正常情況下具有交互作用之RPA2/4E-BP3複合體分開。因此綜合以上的結果可以推論,RPA2/4E-BP3間的交互作用,主要是與RPA2的磷酸化與否有關而非4E-BP3。

      Replication Protein A (RPA) is a heterotrimeric (70-, 32- & 14-kDa subunits) single-stranded DNA-binding protein that is required for DNA replication, recombination and repair. The primary ssDNA binding activity is localized to the 70-kDa subunit (RPA1). However, the 32-kDa subunit (RPA2) is phosphorylated in a cell cycle dependent manner (during S, G2) and in response to DNA damage. Hyperphosphorylation occurs in response to DNA-damaging agents, such as UV or IR treatment and cellular apoptosis. Phosphorylation or mutations that add multiple negative charges to the N-terminal phosphorylation domain of RPA32 cause altered interactions with p53 and DNA polymeraseα/DNA primase. In our previous studies, a yeast two-hybrid system using RPA2 as a bait was performed and the results showed that RPA2 is able to interact with the 4E-BP3 protein (eIF4E-binding protein) , a protein competes with eIF4G for binding to eIF4E and acts as inhibitor of the initiation complexes required for cap-dependent mRNA translation. Therefore, in this study, in vitro and in vivo immunoprecipitation assays were preformed to confirm the interaction between RPA2 and 4E-BP3; m7-GTP sepharose pull down assay was performed to confirm the interaction between RPA2 and 4E-BP3 not involved in the relationship of eIF4E/4E-BP3. The truncated forms of RPA2 lacking N-terminal, middle, or C-terminal domain were expressed by using TnT quick coupled transcription/translation kit. The results of immunoprecipitation assays suggest the binding area of RPA2 with 4E-BP3 located within phosphorylation domain of RPA2. A stable clone (SBP3) of HEK293 cell lines which constitutively expressed the 4E-BP3 was established. MTT assay analysis revealed that the proliferation rate of SBP3 cell decreased by 50%, but its cell size enlarged somewhat compared to those of normal HEK293 cell. It has been reported that U2OS cell transiently expressed 4E-BP1 resulted in its cell proliferation rate decreased and its cell size reduced by 10% compared to those of normal U2OS cell. We also find that starvation of SBP3 cells for serum at 24 hr resulted in a significant reduction in the phosphorylation of 4E-BP3 at Thr-23 phosphorylated site and this coincided with a decrease association of 4E-BP3 and eIF4E. In contrast, treatment with rapamycin for 24hr resulted in a significant increased in the phosphorylation of 4E-BP3 at Thr-23 phosphorylated site and this coincided with a increased association of 4E-BP3 and eIF4E. This finding suggested that the association of eIF4E/4E-BP3 seems to be regulated by another signal transduction pathway or be active via phosphorylation of 4E-BP3. On the other hand, the dissociation of RPA2 and 4E-BP3 was detected in serum-starved or rapamycin treated SBP3 cells indicating that the dissociation of 4E-BP3/RPA2 may not be regulated via the phosphorylation of 4E-BP3. Because the results of in vitro immunoprecipitation assays suggest the binding area of RPA2 with 4E-BP3 located within phosphorylation domain of RPA2. Our previous studies found that RPA2-4E-BP3 complex may dissociate in the UV-stimulated cells. It is interesting to further investing whether the dissociation of 4E-BP3/RPA2 may be regulated via the phosphorylation of RPA2.

    授權書 口試合格證明 中文摘要 I 英文摘要 III 致謝 V 目錄 VII 圖目錄 IX 縮寫檢索表 XI 緒論 1 材料與方法 13 一、使用之菌株、載體及培養基 13 二、質體DNA在大腸桿菌的轉形作用 (Transformation) 14 三、少量質體DNA的抽取 15 四、RPA2以及4E-BP3全長和其截短片段重組蛋白之構築 16 五、試管內 ( in vitro ) 表現放射線標定之重組蛋白 (TnT Quick Coupled Transcription/Translation System) 19 六、以試管表現重組蛋白為來源之免疫沈澱法 20 七、細胞解凍 21 八、細胞繼代培養 (附著型細胞adherent cell) 22 九、細胞數目測定 22 十、細胞保存 23 十一、轉染 (transfection) 質體至細胞中 23 十二、細胞存活率偵測分析 (MTT assay) 24 十三、收取細胞 (Harvesting cell lysate) 25 十四、蛋白質濃度的定量 26 十五、SDS-PAGE之蛋白質分子量分析 26 十六、西方點墨法 (Western blotting) 28 十七、共同免疫沈澱 (co-immunoprecipitation) 31 十八、m7-GTP Sepharose Pull Down 33 結果 34 討論 43 參考文獻 47 附圖 55 自述 75

    Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177-96, 2001
    Abramova NA, Russell J, Botchan M, Li R. Interaction between replication protein A and p53 is disrupted after UV damage in a DNA repair-dependent manner. Proc. Natl. Acad. Sci. USA 94, 7186-7191, 1997
    Adachi Y, Laemmli UK. Identification of nuclear pre-replication centers poised for DNA synthesis in Xenopus egg extracts: immunolocalization study of replication protein. A. J. Cell Biol. 119, 1-15, 1992
    Barr SM, Leung CG, Chang EE, Cimprich KA. ATR kinase activity regulates the intranuclear translocation of ATR and RPA following ionizing radiation. Curr Biol. 13, 1047-51, 2003
    Binz SK, Lao Y, Lowry DF, Wold MS. The phosphorylation domain of the 32-kDa subunit of replication protein A (RPA) modulates RPA-DNA interactions. Evidence for an intersubunit interaction. J Biol Chem. 278, 35584-91, 2003
    Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 4, 335-48, 2004
    Blackwell LJ, Borowiec JA, Masrangelo IA. Single-stranded DNA binding alters human replication protein A structure and facilitates interaction with DNA-dependent protein kinase. Mol. Cell. Biol. 16, 4798-4806, 1996
    Bochkarev A, Bochkareva E, Frappier L, Edwards AM. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J. 18, 4498-4504, 1999
    Brush GS, Anderson CW, Kelly TJ. The DNA-activated protein kinase is required for the phosphorylation of replication protein A during simian virus 40 DNA replication. Proc. Natl. Acad. Sci. USA 91, 12520-12524, 1994
    Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC Jr, Abraham RT. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science. 277, 99-101, 1997
    Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC Jr, Abraham RT. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J. 15, 5256-5267, 1996
    Cardoso MC, Leonhardt H, Nadal-Ginard B. Reversal of terminal differentiation and control of DNA replication: cyclin A and Cdk2 specifically localize at subnuclear sites of DNA replication. Cell 74, 979-792, 1993
    Carty MP, Levine AS, Dixon K. HeLa cell single-stranded DNA-binding protein increases the accuracy of DNA synthesis by DNA polymerase alpha in vitro. Mutat Res. 274, 29-43, 1992
    Clemens MJ. Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins. J Cell Mol Med. 5, 221-39, 2001
    Clemens MJ. Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene. 23, 3180-8, 2004
    Cohen N, Sharma M, Kentsis A, Perez JM, Strudwick S, Borden KL. PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J. 20, 4547-59, 2001
    Daughdrill GW, Ackerman J, Isern NG, Botuyan MV, Arrowsmith C, Wold MS, Lowry DF. The weak interdomain coupling observed in the 70 kDa subunit of human replication protein A is unaffected by ssDNA binding. Nucleic Acids Res. 29, 3270-6, 2001
    De Benedetti A, Harris AL. eIF4E expression in tumors: its possible role in progression of malignancies. Int. J. Biochem. Cell Biol. 31, 59-72, 1999
    Din S, Brill SJ, Fairman MP, Stillman B. Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev. 4, 968-977, 1990
    Dutta A, Stillman B. Cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J. 11, 2189-2199, 1992
    Fadden P, Haystead TA, Lawrence JC Jr. Identification of phosphorylation sites in the translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J Biol Chem. 272, 10240-7, 1997
    Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol. 24, 200-16, 2004
    Fleurent M, Gingras AC, Sonenberg N, Meloche S. Angiotensin II stimulates phosphorylation of the translational repressor 4E-binding protein 1 by a mitogen-activated protein kinase-independent mechanism. J. Biol. Chem. 272, 4006-4012, 1997
    Foukas LC, Shepherd PR. eIF4E binding protein 1 and H-Ras are novel substrates for the protein kinase activity of class-I phosphoinositide 3-kinase. Biochem Biophys Res Commun. 319, 541-9, 2004
    Georgaki A, Hubscher U. DNA unwinding by replication protein A is a property of the 70 kDa subunit and is facilitated by phosphorylation of the 32 kDa subunit. Nucleic Acids Res. 21, 3659-3665, 1993
    Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes Dev. 12, 502-13, 1998
    Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13, 1422-1437, 1999
    Gingras AC. Raught B. Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913-963, 1999
    Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA, Lawrence JC Jr. cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc. Natl. Acad. Sci. USA 92, 7222-7226, 1995
    Gomes XV, Wold MS. Structural analysis of human replication protein A. Mapping functional domains of the 70 kDa subunit. J. Biol. Chem. 270, 4534-4543, 1995
    Gomes XV, Henricksen LA, Wold MS. Proteolytic mapping of human replication protein A: evidence for multiple structural domains and a conformational change upon interaction with single-stranded DNA. Biochemistry 35, 5586-5595, 1996
    Haghighat A, Mader S, Pause A, Sonenberg N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 14, 5701-5709, 1995
    Hahm B, Kim YK, Kim JH, Kim TY, Hahm B SK. Heterogeneous nuclear ribonucleoprotein L interacts with the 3' border of the internal ribosomal entry site of hepatitis C virus. J. Virol. 72, 8782-8788, 1998
    Heesom KJ, Gampel A, Mellor H, Denton RM. Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Curr. Biol. 11, 1374-1397, 2001
    Henricksen LA, Wold MS. Replication protein A mutants lacking phosphorylation sites for p34cdc2 kinase support DNA replication. J. Biol. Chem. 269, 1121-1132, 1994
    Henricksen LA, Carter T, Dutta A, Wold MS. Phosphorylation of human replication protein A by the DNA dependent protein kinase DNA dependent protein kinase is involved in the modulation of DNA replication. Nucleic Acids Res. 24, 433-440, 1996
    Huang S, Houghton PJ. Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol. 3, 371-7, 2003
    Kerekatte V, Smiley K, Hu B, Smith A, Gelder F, De Benedetti A. The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas. Int. J. Cancer 64, 27-31, 1995
    Kenny MK, Lee SH, Hurwitz J. Multiple functions of human single-stranded-DNA binding protein in simian virus 40 DNA replication: single-strand stabilization and stimulation of DNA polymerases alpha and delta. Proc. Natl. Acad. Sci. USA 86, 9757-9761, 1989
    Kirchgessner CU, Patil CK, Evans JW, Cuomo CA, Fried LM, Carter T, Oettinger MA, Brown JM. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 267, 1178-1183, 1995
    Kleijn M, Scheper GC, Wilson ML, Tee AR, Proud CG. Localisation and regulation of the eIF4E-binding protein 4E-BP3. FEBS Lett. 532, 319-23, 2002
    Kleijn M, Scheper GC, Voorma HO, Thomas AA. Regulation of translation initiation factors by signal transduction. Eur J Biochem. 253, 531-44, 1998
    Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115, 887-903, 1991
    Lawrence JC Jr, Abraham RT. PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem Sci. 22, 345-9, 1997
    Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic translation initiation factor subunit that binds to mRNA cap. Nature 345, 544-547, 1990
    Lee SH, Kim DK, Drissi R. Human xeroderma pigmentosum group A protein interacts with human replication protein A and inhibits DNA replication. J. Biol. Chem. 270, 12801-12807, 1995
    Lejbkowicz F, Goyer C, Darveau A, Neron S, Lemieux R, Sonenberg N. A fraction of the mRNA 5' cap-binding protein, eukaryotic initiation factor 4E, localizes to the nucleus. Proc Natl Acad Sci U S A. 89, 9612-6, 1992
    Lin TA, Kong X, Saltiel AR, Blackshear PJ, Lawrence JC Jr. Control of PHAS-I by insulin in 3T3-L1 adipocytes synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. J. Biol. Chem. 270, 18531-18538, 1995
    Lin YL, Chen C, Keshav KF, Winchester E, Dutta A. Dissection of functional domains of the human DNA replication protein complex replication protein A. J. Biol. Chem. 271, 17190-17198, 1996
    Liu VF, Weaver DT. The ionizing radiation-induced replication protein A phosphorylation response differs between ataxia telangiectasia and normal human cell. Mol. Cell. Biol. 13, 7222-7231, 1993
    Loo YM, Melendy T. The majority of human replication protein A remains complexed throughout the cell cycle. Nucleic Acids Res. 28, 3354-60, 2000
    Mader S, Lee H, Pause A, Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15, 4990-4997, 1995
    Mer G, Bochkarev A, Gupta R, Bochkareva E, Frappier L, Ingles CJ, Edwards AM, Chazin WJ. Structural Basis for the Recognition of DNA Repair Protein UNG2, XPA, and RAD52 by Replication Factor RPA. Cell 103, 449-456, 2000
    Miyagi Y, Sugiyama A, Asai A, Okazaki T, Kuchino Y, Kerr SJ. Elevated levels of eukaryotic translation initiation factor eIF-4E, mRNA in a broad spectrum of transformed cell lines. Cancer Lett 91, 247-252, 1995
    Niu H, Erdjument-Bromage H, Pan ZQ, Lee SH, Tempst P, Hurwitz J. Mapping of amino acid residues in the p34 subunit of human single-stranded DNA-binding protein phosphorylated by DNA-dependent protein kinase and Cdc2 kinase in vitro. J. Biol. Chem. 272: 12634-12641, 1997
    Pan ZQ, Amin AA, Gibbs E, Niu H, Hurwitz J. Phosphorylation of p34 subunit of human single-stranded-DNA-binding protein in cyclin A-activated G1 extracts is catalyzed by cdk-cyclin A complex and DNA-dependent-protein kinase. Proc. Natl. Acad. Sci. USA 91, 8343-8347, 1994
    Pain VM. Initiation of protein synthesis in eukaryotic cells. Eur. J. Biochem. 236, 747-771, 1996
    Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, Sonenberg N. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 371, 762-767, 1994
    Pause A, Sonenberg N. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 11, 2643-54, 1992
    Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-325, 1988
    Pfuetzner RA, Bochkarev A, Frappier L, Edwards AM. Replication protein A. Characterization and crystallization of the DNA binding domain. J. Biol. Chem. 272, 430-434, 1997
    Philipova D, Mullen JR, Maniar HS, Lu J, Gu C, Brill SJ. A hierarchy of SSB protomers in replication protein A. Genes Dev. 10, 2222-2233, 1996
    Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N. 4E-BP3, a new member of the Eukaryotic initation factor 4E-binding protein family. J. Biol. Chem. 273, 14002-14007, 1998
    Raught B, Gingras AC. eIF4E activity is regulated at multiple levels. Int J Biochem Cell Biol. 31, 43-57, 1999
    Rau M, Ohlmann T, Morley SJ, Pain VM. A reevaluation of the cap-binding protein, eIF4E, as a rate-limiting factor for initiation of translation in reticulocyte lysate. J Biol Chem. 271, 8983-90, 1996
    Rousseau D, Gingras AC, Pause A, Sonenberg N. The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 13, 2415-2420, 1996
    Seo YS, Lee SH, Hurwitz J. Isolation of a DNA helicase from HeLa cells requiring the multisubunit human single-stranded DNA-binding protein for activity. J. Biol Chem. 266, 13161-13170, 1991
    Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, Pommier Y. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA: DNA-PK complexes. EMBO J. 18, 1397-1406, 1999
    Sonenberg N, Gingras AC. The mRNA 5’-cap-binding protein eIF4E and control of cell growth. Curr. Opin. Cell. Biol. 10, 268-275, 1998
    Sukhodolets KE, Hickman AB, Agarwal SK, Sukhodolets MV, Obungu VH, Novotny EA, Crabtree JS, Chandrasekharappa SC, Collins FS, Spiegel AM, Burns AL, Marx SJ. The 32-Kilodalton Subunit of Replication Protein A Interacts with Menin, the Product of the MEN1 Tumor Suppressor Gene. Mol. Cell. Biol. 23, 493-509, 2003
    Strudwick S, Borden KL. The emerging roles of translation factor eIF4E in the nucleus. Differentiation. 70, 10-22, 2002
    Tee AR, Proud CG. Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol. 22, 1674-83, 2002
    Tee AR, Proud CG. DNA-damaging agents cause inactivation of translational regulators linked to mTOR signaling. Oncogene. 19, 3021-31, 2000
    Treuner K, Ramsperger U, Knippers R. Replication protein A induces the unwinding of long double-stranded DNA regions. J Mol Biol. 259, 104-12, 1996
    Vassin VM, Wold MS, Borowiec JA. Replication protein A (RPA) phosphorylation prevents RPA association with replication centers. Mol Cell Biol. 24, 1930-43, 2004
    Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet. 9, 138-141, 1993
    Von Der Haar T, Gross JD, Wagner G, McCarthy JE. The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol. 11, 503-11, 2004
    von Manteuffel SR, Gingras AC, Ming XF, Sonenberg N, Thomas G. 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc. Natl. Acad. Sci. USA 93, 4076-4080, 1996
    Wang H, Guan J, Wang H, Perrault AR, Wang Y, Iliakis G. Replication Protein A2 Phosphorylation after DNA Damage by the Coordinated Action of Ataxia Telangiectasia-Mutated and DNA-dependent Protein Kinase. Cancer Res. 61, 8554-8563, 2001
    Wang X, Li W, Parra JL, Beugnet A, Proud CG. The C terminus of initiation factor 4E-binding protein 1 contains multiple regulatory features that influence its function and phosphorylation. Mol Cell Biol. 23, 1546-57, 2003
    Wobbe CR, Weissbach L, Borowiec JA, Dean FB, Murakami Y, Bullock P, Hurwitz J. Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc. Natl. Acad. Sci. USA 84, 1834-1838, 1987
    Wold MS. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61-92, 1997
    Zhang X, Shu L, Hosoi H, Murti KG, Houghton PJ. Predominant nuclear localization of mammalian target of rapamycin in normal and malignant cells in culture. J Biol Chem. 277, 28127-34, 2002
    陳嘉玲,探討RPA2與4E-BP3的交互作用及其可能的生理角色。國立成功大學醫學院生物化學研究所碩士論文,2002。
    蘇榆芳,探討與RPA2有交互作用之蛋白的研究。國立成功大學醫學院生物化學研究所碩士論文,2003。

    下載圖示 校內:2006-07-20公開
    校外:2006-07-20公開
    QR CODE