| 研究生: |
陳培瑜 Chen, Pei-Yu |
|---|---|
| 論文名稱: |
微藻葉黃素之純化及其活體外大白鼠水晶體蛋白之抗氧化研究 The Extraction and Purification of Lutein from Microalgae (Chlorella Sorokiniana) and Its in vitro Study of Antioxidant Activity for Rat Lens Crystallins |
| 指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 微藻 、葉黃素 、水晶體蛋白 、氧化壓力 |
| 外文關鍵詞: | Microalgae, Lutein, Oxidative stress, Lens crystallins |
| 相關次數: | 點閱:138 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
葉黃素已被發現於眼睛水晶體中,其結構中含有多個共軛雙鍵,於人類視網膜裡有過濾藍光之作用,以保護眼睛免受到光之傷害。葉黃素亦具抗氧化作用,可以抑制光化學作用後所產生的活性氧類(Reactive oxygen species, ROS),可有效預防白內障以及降低黃斑部病變發生,近年來已被大量地推廣使用。相對於目前商業化葉黃素之主要來源-金盞花(marigold flower),利用微藻(microalga)生產葉黃素有許多優點,如微藻有較高之生長速率亦無季節性之限制,且其養殖之人力需求較低等。
本研究致力於利用微藻(Chlorella Sorokiniana)萃取與純化葉黃素,並利用高效液相層析儀(HPLC, high performance liquid chromatography)分析其不同萃取階段及不同條件之葉黃素含量,發展兩種萃取純化方法,將二氯甲烷粗萃物經過管柱層析純化(方法A),得到的葉黃素純度極高(90%以上),但是其產率非常低(0.577%),而未經過管柱層析,以85%乙醇溶液萃取純化(方法B),其產率較高(50.4%),但是葉黃素純度較低(76.85%)。由DPPH自由基清除能力實驗中顯示方法A萃取純化之葉黃素有較佳的抗氧化能力,故以純度90%以上之葉黃素(方法A)添加入水晶體蛋白中,分別進行: (1)利用ascorbate-FeCl3-EDTA-H2O2的氧化系統氧化水晶體蛋白,利用紫外光/可見光光譜儀 (UV-Vis Spectrophotomer)檢測蛋白質氧化集結的混濁程度以及葉黃素捕捉過氧化氫之能力 (2)利用UVA照射水晶體蛋白使其產生光氧化反應,並利用Trp螢光光譜及ANS螢光光譜,探討蛋白質Trp微環境變化與表面疏水性暴露的改變。
實驗結果顯示未添加葉黃素的水晶體蛋白經氧化系統氧化後,隨著氧化時間增加,其混濁度有增加的趨勢,而添加葉黃素的水晶體蛋白隨著葉黃素的濃度增加,其混濁度明顯下降且捕捉過氧化氫的能力也有增強的現象;Trp螢光光譜及ANS螢光光譜皆顯示隨著照光時間增加,未添加葉黃素的水晶體蛋白結構產生了明顯的變化甚至遭受破壞而變性,而添加葉黃素的水晶體蛋白結構變化有明顯趨緩的現象。本研究更進一步支持對於保護水晶體蛋白免受氧化壓力的破壞以及抑制紫外線照射所造成的影響,葉黃素扮演了非常重要的角色。
A method for the extraction and purification of lutein from lyophilized microalgae (Chlorella Sorokiniana) powder was employed. Sponification using 10 M KOH solution containing 2.5% ascorbic acid and extraction using DCM, followed by removing the fat-soluble ingredients with hexane, and finally using flash column chromatography eluted with hexane/ethyl acetate (20:1~1:1; v/v) to obtain lutein with 92.77% purity and 0.577% yield. Another method using recrystallization in 85% ethanol aqueous solution to purify the lutein instead of using flash column chromatography was employed. This was a quick and easy way, however, the purity was 76.85% and 5.04% yield.
Lutein plays a protective role in quenching of reactive oxygen species during oxidative stress conditions in lens. H2O2 is one of the physiologically relevant oxidants in the lens and aqueous humor, UVA also cause the phototoxic damage of lens through photo-oxidation to produce active species. Oxidative stress is an initiating factor for the development of cataract and describes the events leading to lens opacification and the conformational change of lens crystalline residues. Therefore, in this study, we focus on the effects of lutein from microalgae C. Sorokiniana on the inhibition of oxidative stress under oxidation with ascorbate–FeCl3–EDTA–H2O2 by antioxidant activity assay and the prevention of lens crystallins from UV damage employing by tryptophan and ANS fluorescence to investigate the UV induced structural change of lens α-/γ-crystallin and the hydrophobic exposure. According to the results from the present study, lutein from microalgae C. Sorokiniana was found to be an effective antioxidant to protect lens crystallins from damage in in vitro assay.
1. Khachik, F.; Bernstein, P.; Garland, D. L.; Identification of lutein and zeaxanthin oxidation products in human and monkey retinas. Investig. Ophthamol. Vis. Sci. 1997, 38, 1802–1811.
2. Julie A.; Mares-Perlman.; The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. J. Nutr. 2002, 132, 518S-524S.
3. Carpentier, S.; Knaus, M.; Such, M. Associations between lutein, zeaxanthin, and age-related macular degeneration: An overview. Crit. Rev. Food Sci. Nutr. 2009, 49, 313–326.
4. Keyvan Koushan.; Raluca Rusovici.; Wenhua Li.; Lee R.; Ferguson.; Kakarla V. Chalam. The role of lutein in eye-related disease. Nutrients. 2013, 5, 1823-1839.
5. Sreelakshmi V.; Abraham A. Age related or senile cataract: pathology, mechanism and management. Austin J Clin Ophthalmol.2016, 3(2), 1067.
6. B. Demmig-Adams.; W.W. Adams. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1996, 1, 21–26.
7. Chin, C.J.; Taylor, A. Nutritional antioxidants and age-related cataract and macular degeneration. Exp. Eye Res. 2007, 84, 229–245.
8. Spector A. Oxidative stress-induced cataract: mechanism of action. The FASEB Journal, 1995, 9(12), 1173-82.
9. Shambhu Dayal Varma.; Svitlana Kovtun.; Kavita Rajeev Hegde. Role of UV irradiation and oxidative stress in cataract formation. Medical prevention by nutritional antioxidants and metabolic agonists. Eye Contact Lens. 2011, 37(4), 233–245
10. Kate L. Moreau.; Jonathan A. King. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med. 2012, 18(5), 273–282
11. Isla M. Streete.; Joanne F. Jamie.; Roger J. W. Truscott. Lenticular levels of amino acids and free uv filters differ significantly between normals and cataract patients. IOVS. 2004, 45, 11
12. V, B.R.; Excited states and free radicals in biology and medicine. 1993, 253-259.
13. V, B.R.; Excited states and free radicals in biology and medicine. 1993, 102-141.
14. Andley, U.P.; Sutherland, P.; Ling, J. N.; Chakrabarti, B. Changes in tertiary structure of calf-lens alpha-crystallin by near-irradiation: role of hydrogen peroxide. Photochem. Photobiol. 1984, 40(3), 343-349.
15. Zigler, J.S.J.; J. D. Goosey. Photosensitized oxidation in the ocular lens: evidence for photosensitizers endogenous to the human lens. Photochem. Photobiol. 1981, 33, 869-874.
16. Baldo F. Cordero.; Irina Obraztsova.; Inmaculada Couso.; Rosa Leon.; Maria Angeles Vargas.; Herminia Rodriguez. Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar. Drug . 2011, 9, 1607-1624
17. Del Campo, J.A.; Garcia-Gonzalez, M.; Guerrero, M.G. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2007, 74, 1163–1174.
18. Piccaglia, R.; Marotti, M.; Grandi, S. Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Ind. Crops Prod. 1998, 8, 45–51.
19. J. Sánchez.; J Fernández.; F. Acién.; A. Rueda.; J. Pérez-Parra.; E. Molina. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem. 2008, 43, 398–405.
20. X.M. Shi.; X.W. Zhang.; F. Chen. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb. Technol. 2000, 27, 312–318.
21. Shi, X.M.; Jiang, Y.; Chen, F. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol. Prog. 2002, 18, 723–727.
22. Hua-Bin Li.; Yue Jiang.; Feng Chen. Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification, J. Agric. Food Chem. 2002, 50, 1070-1072
23. Tyczkowski, J. K.; Hamilton, P. B. Preparation of purified lutein and its diesters from extracts of marigold (Tagetes erecta). Poult. Sci. 1991, 70, 651-654.
24. Li, H. B.; Chen, F.; Zhang, T. Y.; Yang, F. Q.; Xu, G. Q. Preparative isolation and purification of lutein from the microalga Chlorella Vulgaris by high-speed counter-current chromatography. J. Chromatogr. A. 2001, 905, 151-155.
25. J. Vechpanich.; A. Shotipruk. Recovery of free lutein from tagetes erecta: Determination of suitable saponification and crystallization conditions. Separation Science and Technology, 2011, 46, 265-271.
26. Panatpong Boonnoun.; Thanawich Opaskonkun.; Phattanon Prasitchoke.; Motonobu Goto.; Artiwan Shotipruk. Purification of free lutein from marigold flowers by liquid chromatography. Engineering Journal. 2012, 16, 5.
27. Kardong, K. Vertebrates: comparative anatomy, function, evolution, 5th Edition. 2008, 5, 676-677.
28. Martin Haslbeck.; Jirka Peschek.; Johannes Buchner.; Sevil Weinkauf. Structure and function of α-crystallins: Traversing from in vitro to in vivo. Biochimica et Biophysica Acta. 2016, 1860, 149–166.
29. Joseph Horwitz.; Michael P Bova.; Lin- Lin Ding.; Dana A Haley.; Phoebe L Stewart. Lens α-crystallin: Function and structure. Eye .1999, 13, 403–408
30. Kirsten J. Lampi.; Phillip A. Wilmarth.; Matthew R. Murray.; Larry L. David. Lens β-crystallins: The role of deamidation and related modifications in aging and cataract. Progress in Biophysics and Molecular Biology. 2014, 115, 21-31
31. Venkata Pulla Rao Vendra.; Ismail K.; Sushil C.; Anbukkarasi M.; Dorairajan B. Gamma crystallins of the human eye lens. Biochimica et Biophysica Acta. 2016, 1860, 333–343
32. Joe A. Vinson. Oxidative stress in cataracts. Pathophysiology. 2006, 13 , 151–162
33. J.M. Fernandez-Sevilla.; F.G.A. Fernandez.; E.M. Grima. Biotechnological production of lutein and its applications, Appl. Microbiol. Biotechnol. 2010, 86, 27–40.
34. O.P. Sharma.; T.K. Bhat. Food Chemistry. 2009, 113, 1202–1205.
35. Angel Gr.; Vimala B.; Bala Nambisan. Int J Curr Pharm Res. 2012, 4(2), 45-47
36. Ilhami G.; Zu¨beyr H.; Mahfuz E.; Hassan Y. Aboul-Enein. Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry. 2010, 3, 43–53
37. Avani Patel.; Amit Patel.; N. M. Patel. Determination of polyphenols and free radical scavenging activity of Tephrosia purpurea linn leaves (Leguminosae). Pharmacognosy Res. 2010, 2(3), 152–158.
38. Fu-Yung Huang.; Chin-Min Chia.; Yuh Ho. The formation of oxidatively induced high-molecularweight aggregate of α-/γ-crystallins, Biochemical and Biophysical Research Communications. 1999, 260, 60–65
39. Okezie I. Aruoma.; Martin Grootveld.; Barry Halliwell. The role of iron in ascorbate-dependent deoxyribose degradation. Evidence consistent with a site-specific hydroxyl radical generation caused by iron ions bound to the deoxyribose molecule, Journal of Inorganic Biochemistry. 1987, 29, 289-299
40. Yoji Kato, Koji Uchida, Shunro Kawakishi, Oxidative fragmentation of collagen and by Cu(II)/H2O2. J Biol Chem. 1992, 267(33), 23646-51.
41. Koji Uchida.; ShunroKawakishi. Ascorbate-mediated specific oxidation of the imidazole ring in a histidine derivative. Bioorganic Chemistry. 1989,17, 330-343
42. Irene P.; Francesc V.; Jaume B.; Alfredo R.; Nadine F.; Jesuäs B.; Carles C. Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled mediterranean herbs and aromatic plants. J. Agric. Food Chem. 2002, 50, 6882−6890.
43. Randall J.Ruch.; Shu-jun Cheng.; James E.Klaunig. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea, Carcinogenesis. 1989, 10(6 ), 1003-1008.
44. Barry Halliwell.; John M. C. Gutteridge.; Orezie I. Aruoma. The deoxyribose method:
A simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Analytical Biochemistry. 1987,165(1) , 215-219.
45. Ramachandran.; S. Morris. Devamanoharan, P.; Henein,M.; Varma, S. D. Exp. Eye Res. 1991, 53, 503–506.
46. Shasha Gao.; Tingyu Qin.; Zhenzhen Liu.; Maria Andrea Caceres.; Carlos F. Ronchi.; C-Y. Oliver Chen.; Kyung-jin Yeum.; Allen Taylor.; Jeffery B. Blumberg.; Yizhi Liu.; Fu Shang. Lutein and zeaxanthin supplementation reduces H2O2-induced oxidative damage in human lens epithelial cells. Molecular Vision .2011, 17, 3180-3190.
47. Abraham Spector.; Guo-Ming Wang.; Ren-Rong Wang. Photochemically induced cataracts in rat lenses can be prevented by AL-3823A, a glutathione peroxidase mimic, Proc. Natl. Acad Sci. USA. 1993, 90, 7485-7489.
48. Sindhu ER.; Preethi KC.; Kuttan R. Antioxidant activity of carotenoid lutein in vitro and in vivo. Indian J Exp Biol. 2010, 48(8), 843-8.
49. Joseph R. Lakowicz. Protein FIuorescence. Topics in Fluorescence Spectroscopy 2000, 6.
50. E. A. Burstein.; N. S. Vedenkina.; M. N. Ivkova. Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol. 1973, 18 (4), 263-279.
51. Raymond F.Borkman.; Sidney Lerman. Fluorescence spectra of tryptophan residues in human and bovine lens proteins. Exp. Eye Res. 1978, 26, 705-713.
52. Jiejin Chen.; Patrik R. Callis.; Jonathan King. Mechanism of the very efficient quenching of tryptophan fluorescence in human γD- and γS-crystallins: The γ-crystallin fold may have evolved to protect tryptophan residues from Ultraviolet photodamage. Biochemistry. 2009, 48, 3708–3716.
53. Stryer, L. Energy transfer: a spectroscopic ruler. J. Mol. Biol. 1965, 13, 482-495
54. Andraâs Maâlnaâsi-Csizmadia.; Gyorgy Hegyi.; Ferenc Tolgyesi.; Andrew G. Szent-Gyorgyi.; Laâszlo Nyitray. Eur. J. Biochem. 1999, 261, 452-458.
55. Nigel Gains.; Alan P. Dawson. 8-Anilinonaphthalene-1-sulphonate interaction with whole and disrupted mitochondria: A re-evaluation of the use of double-reciprocal plots in the derivation of binding parameters for fluorescent probes binding to mitochondrial membranes. Biochem. J. 1975, 148, 157-160.
56. Michael Cardamone.; Nirdosh K. Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem. J. 1992, 282, 589-593.
57. Matulis D.; Baumann CG.; Bloomfield VA.; Lovrien RE. 1-Anilino-8-Naphthalene Sulfonate as a Protein Conformational Tightening Agent. Institute of Biochemistry. 1999, 49, 451-458.