簡易檢索 / 詳目顯示

研究生: 詹景翔
Jhan, Jing-Siang
論文名稱: 以水系膠鑄成型技術製作氧化鋯陶瓷生坯及燒結之研究
A study on fabrication of zirconia ceramic green body and sintering by aqueous gel-casting technology
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 62
中文關鍵詞: 釔穩定氧化鋯膠鑄成型法二階段燒結法破裂韌性抗彎強度
外文關鍵詞: yttrium stabilized zirconia, gel casting, two-stage sintering, fracture toughness, flexural strength
相關次數: 點閱:75下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以原始粒徑94 nm的3 mol%釔穩定氧化鋯為原料並製作成水系漿料以膠鑄成型法生成陶瓷生坯。其中陶瓷粉末的分散劑以低轉速段黏度高低,決定3YTZ最適分散劑為Dolapix CE64。以此作為分散劑可以輕易製作固含量45 %的3YTZ漿料且在剪切速率為1 1/s處,黏度為0.2 Pa.s。後續實驗發現在進行膠鑄成型並加入有機單與聚合起始劑時,漿料有黏度增加的問題。以FTIR發現,當漿料中存在分散劑Dolapix CE64時,其含有的有機官能基會直接減少膠鑄成型滯留時間並失去分散功能,而使黏度增加。但在漿料中加入適當的對苯二酚(HQ)時,可以有效延緩聚合反應的時間並增加注漿的工作時間。而在溫度60℃時,可以使HQ失去阻聚能力並有利於單體聚合而增加生坯強度。
    以二階段燒結法可以達到緻密化的同時控制晶粒大小。本實驗先以DIL測量生坯在不同溫度點的瞬時相對密度。當溫度達到1300℃處,相對密度達到83%,表示陶瓷已達到燒結後期並要開始晶粒成長。而實際實驗結果發現在1280℃較為適合作為第一階段燒結溫度。再降低溫度至1180℃持溫0~32小時,發現晶粒成長幅度小並且緻密化至相對密度95%。
    但由於燒結體密度仍過低,後續以1200℃持溫32小時、相對密度約97%之燒結體作機械性質量測。其結果為維氏硬度為11.97 GPa,標準差為1.29。破裂韌性為5.41 MPa.m1/2,標準差為0.7。抗彎強度為534 MPa,標準差為88。表示藉由本實驗的製程可以些微改善機械性質但仍可利用熱均壓燒結(HIP)進一步增加相對密度並大大提高3YTZ燒結體機械性質

    In this study, 3 mol% yttria-stabilized zirconia(3YTZ) with a primary particle size of 94 nm was used as the raw material to prepare green body by using gel casting process. Dolapix CE64 is a good dispersant for 3YTZ, which can be used to prepare dispersed slurry with high solid content and low viscosity. However, as the dispersed slurry was added organic monomer and polymerization initiator, Dolapix CE64 promoted the gelling, leading to the increase in the slurry viscosity abruptly.
    As the dispersant Dolapix CE64 was present in the slurry, its functional group reacted with the monomer, resulting in the decrease of the incubation time of the gelling and the increase in the viscosity. Hydroquinone (HQ) can be used to delay the polymerization and extend the working time of gel casting. As the temperature was raised to above 60 ℃, the polymerization can be promoted and the effect of HQ can be suppressed, leading to increase in the strength of green body.
    The two-stage sintering method was used to control the grain growth. Based on the dilatometry results, the first stage sintering temperature was chosen at 1280 ℃, where the relative density reached 83%, indicating that 3YTZ has reached the final stage of sintering. In the second stage sintering, the temperature was lowered to 1200 ° C and soaked for 32 h to inhibit the grain growth and continue the densification to a relative density of 97%. The Vickers hardness of 11.97±1.29 GPa, fracture toughness of 5.41±0.7 MPa.m1/2 and flexural strength of 534±88 MPa can be obtained for the sample prepared by the two stage sintering.

    摘要 I 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究目的 3 第二章 文獻回顧 4 2-1 氧化鋯之晶體與結構 4 2-2 微量釔添加氧化鋯 5 2-2-1 微量釔添加氧化鋯之原理 5 2-2-2 微量釔添加氧化鋯之機械性質 7 2-3 膠鑄成型法 9 2-3-1 膠鑄成型原理 9 2-3-2 膠鑄成型之優點與應用 10 2-3-3 膠鑄成型的膠化溫度條件與時間 12 2-3-4 阻聚劑對膠鑄成型之影響 14 2-4 兩階段燒結法 17 2-4-1 燒結方法對微結構之影響 17 2-4-2 二階段燒結法by Chu 17 2-4-3 二階段燒結法by Chen and Wang 19 2-4-4 TSS-CW之第一段溫度判定 20 第三章 實驗方法及步驟 22 3-1實驗藥品 22 3-2陶瓷粉末分析 22 3-3 膠鑄成型製程 23 3-3-1 漿料製程 23 3-3-2 生坯固化與脫水製程 23 3-3-3 生坯冷均壓製程(CIP) 24 3-4 漿料性質分析 24 3-4-1 漿料流變性質分析 24 3-4-2 漿料有機載體之紅外線光譜儀分析 24 3-5 生胚及燒結體性質 24 3-5-1 生胚熱收縮曲線量測 24 3-5-2 燒結體製程 25 3-5-3 燒結體晶格繞射相分析 25 3-5-4 生胚及燒結體密度量測 25 3-5-5生坯及燒結體顯微結構觀察 26 3-5-6 燒結體抗彎強度分析 26 3-5-7 燒結體維氏硬度及破裂韌性分析 26 第四章 結果與討論 27 4-1 起始粉末鑑定 27 4-1-1粉末比表面積與粒徑大小分析 27 4-1-2 粉末結晶相分析 29 4-2 漿料黏度性質分析 31 4-2-1 不同分散劑對漿料黏度之影響 31 4-2-2 不同漿料固含量對黏度之影響 35 4-2-3 添加有機載體對漿料黏度之影響 36 4-3 有機載體之紅外線光譜儀分析 38 4-3-1 有機單體與聚合起始劑的聚合反應 38 4-3-2 有機載體之FTIR分析 39 4-3-3 未添加HQ之漿料FTIR分析 40 4-3-4 添加HQ之漿料FTIR分析 41 4-4 膠鑄成型與漿料固化 42 4-4-1不同固化溫度對生坯之影響 42 4-4-2不同單體添加量對生坯之影響 44 4-4-3不同B/P比對生坯之影響 44 4-5 生坯性質分析 45 4-5-1 生坯密度量測 45 4-5-2 生坯熱收縮分析 46 4-6 燒結體性質分析 47 4-6-1 燒結體結晶相分析 47 4-6-2 燒結體密度分析 48 4-6-3 燒結體微結構分析 48 4-6-4 燒結體晶粒尺寸分析 50 4-6-5 燒結體硬度分析 53 4-6-6 燒結體破裂韌性分析 54 4-6-7 燒結體抗彎強度分析 56 第五章 結論 58 參考文獻 59

    [1] Basu, B. (2005). Toughening of yttria-stabilised tetragonal zirconia ceramics. International Materials Reviews, 50(4), 239-256.
    [2] Luo, J., & Stevens, R. (1999). Tetragonality of Nanosized 3Y‐TZP Powders. Journal of the American Ceramic Society, 82(7), 1922-1924.
    [3] Jin, X. J. (2005). Martensitic transformation in zirconia containing ceramics and its applications. Current Opinion in Solid State and Materials Science, 9(6), 313-318.
    [4] Garvie, R. C., Hannink, R. H., & Pascoe, R. T. (1975). Ceramic steel?. Nature, 258(5537), 703.
    [5] Garvie, R. C. (1965). The occurrence of metastable tetragonal zirconia as a crystallite size effect. The journal of physical chemistry, 69(4), 1238-1243.
    [6] Garvie, R. C., & Goss, M. F. (1986). Intrinsic size dependence of the phase transformation temperature in zirconia microcrystals. Journal of materials science, 21(4), 1253-1257.
    [7]Duwez, P., Brown, F. H., & Odell, F. (1951). The zirconia‐yttria system. Journal of the electrochemical society, 98(9), 356-362.
    [8] Scott, H. G. (1975). Phase relationships in the zirconia-yttria system. Journal of Materials Science, 10(9), 1527-1535.
    [9]Lange, F. F. (1982). Transformation toughening. Journal of Materials Science, 17(1), 225-234.
    [10] Luo, J., & Stevens, R. (1999). Tetragonality of Nanosized 3Y‐TZP Powders. Journal of the American Ceramic Society, 82(7), 1922-1924.
    [11]Chraska, T., King, A. H., & Berndt, C. C. (2000). On the size-dependent phase transformation in nanoparticulate zirconia. Materials Science and Engineering: A, 286(1), 169-178.
    [12] Gogotsi, G. A. (2003). Fracture toughness of ceramics and ceramic composites. Ceramics International, 29(7), 777-784.
    [13] Evans, A. G., & Charles, E. A. (1976). Fracture toughness determinations by indentation. Journal of the American Ceramic society, 59(7‐8), 371-372.
    [14] Eichler, J., Eisele, U., & Rödel, J. (2004). Mechanical properties of monoclinic zirconia. Journal of the American Ceramic Society, 87(7), 1401-1403.
    [15]Swain, M. V. (1986). Grain-size dependence of toughness and transformability of 2mol% Y-TZP ceramics. Journal of materials science letters, 5(11), 1159-1162.
    [16] Basu, B., Vleugels, J., & Van der Biest, O. (2002). Y-TZP ceramics with tailored toughness. Key Engineering Materials, 206, 1185-1188.
    [17] Chung, T. J., Song, H., Kim, G. H., & Kim, D. Y. (1997). Microstructure and Phase Stability of Yttria‐Doped Tetragonal Zirconia Polycrystals Heat Treated in Nitrogen Atmosphere. Journal of the American Ceramic Society, 80(10), 2607-2612.
    [18] Girault, E. (1999). Bainitic transformation in TRIP-assisted steels and its influence on mechanical properties. PhD theis, Katholieke Uniersiteit.
    [19] Young, A. C., Omatete, O. O., Janney, M. A., & Menchhofer, P. A. (1991). Gelcasting of alumina. Journal of the American Ceramic Society, 74(3), 612-618.
    [20] Janney, M. A., Omatete, O. O., Walls, C. A., Nunn, S. D., Ogle, R. J., & Westmoreland, G. (1998). Development of low‐toxicity gelcasting systems. Journal of the American Ceramic Society, 81(3), 581-591.
    [21] O.O. Omatete, M.A. Janney and S.D. Nunn, “Gelcasting: From Laboratory Development Toward Industrial Production,” J. Europ. Ceram. Soc., 17, 407-423 (1997).
    [22] M.A. Janney, W. Ren, G.H. Kirby, S.D. Nunn and S. Viswanathan, “Gelcasting Tooling: Net Shape Casting and Green Machining,” Mater. Manuf. Proc., 13, 389-403 (1998).
    [23] Xie, R., Zhou, K., Gan, X., & Zhang, D. (2013). Effects of epoxy resin on gelcasting process and mechanical properties of alumina ceramics. Journal of the American Ceramic Society, 96(4), 1107-1112.
    [24] Kadoma, Y., & Fujisawa, S. (2000). Kinetic evaluation of reactivity of bisphenol A derivatives as radical scavengers for methacrylate polymerization. Biomaterials, 21(21), 2125-2130.
    [25] Fujisawa, S., & Kadoma, Y. (1997). Action of eugenol as a retarder against polymerization of methyl methacrylate by benzoyl peroxide. Biomaterials, 18(9), 701-703.
    [26] Ampelli, C., Di Bella, D., Maschio, G., & Russo, A. (2006). Calorimetric study of the inhibition of runaway reactions during methylmethacrylate polymerization processes. Journal of loss Prevention in the Process Industries, 19(5), 419-424.
    [27] Batch, G. L., & Macosko, C. W. (1990). Oxygen inhibition in differential scanning calorimetry of free radical polymerization. Thermochimica Acta, 166, 185-198.
    [28] Lóh, N. J., Simão, L., Faller, C. A., De Noni Jr, A., & Montedo, O. R. K. (2016). A review of two-step sintering for ceramics. Ceramics International, 42(11), 12556-12572.
    [29] Chu, M. Y., De Jonghe, L. C., Lin, M. K., & Lin, F. J. (1991). Precoarsening to improve microstructure and sintering of powder compacts. Journal of the American Ceramic Society, 74(11), 2902-2911.
    [30] Chen, I. W., & Wang, X. H. (2000). Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature, 404(6774), 168.
    [31]Wang, X. H., Chen, P. L., & Chen, I. W. (2006). Two‐step sintering of ceramics with constant grain‐size, I. Y2O3. Journal of the American Ceramic society, 89(2), 431-437.
    [32] Li, J., & Ye, Y. (2006). Densification and grain growth of Al2O3 nanoceramics during pressureless sintering. Journal of the American Ceramic Society, 89(1), 139-143.
    [33] Bodišová, K., Šajgalík, P., Galusek, D., & Švančárek, P. (2007). Two‐stage sintering of alumina with submicrometer grain size. Journal of the American Ceramic Society, 90(1), 330-332.
    [34] Lóh, N. J., Simão, L., Jiusti, J., De Noni Jr, A., & Montedo, O. R. K. (2017). Effect of temperature and holding time on the densification of alumina obtained by two-step sintering. Ceramics International, 43(11), 8269-8275.
    [35]Mazaheri, M., Simchi, A., & Golestani-Fard, F. (2008). Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering. Journal of the European Ceramic Society, 28(15), 2933-2939.
    [36] Theunissen, G. S. A. M., Winnubst, A. J., & Burggraaf, A. J. (1992). Effect of dopants on the sintering behaviour and stability of tetragonal zirconia ceramics. Journal of the European Ceramic Society, 9(4), 251-2063.
    [37] Xie, Z., Ma, J., Xu, Q., Huang, Y., & Cheng, Y. B. (2004). Effects of dispersants and soluble counter-ions on aqueous dispersibility of nano-sized zirconia powder. Ceramics international, 30(2), 219-224.
    [38] Rao, S. P., Tripathy, S. S., & Raichur, A. M. (2007). Dispersion studies of sub-micron zirconia using Dolapix CE 64. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1-3), 553-558.
    [39] Liu, D. M. (1998). Rheology of aqueous suspensions containing highly concentrated nano-sized zirconia powders. Journal of materials science letters, 17(22), 1883-1885.
    [40] Fengqiu, T., Xiaoxian, H., Yufeng, Z., & Jingkun, G. (2000). Effect of dispersants on surface chemical properties of nano-zirconia suspensions. Ceramics International, 26(1), 93-97.
    [41] 郭詩毅, 林慶元 (2003) 應用FT-IR 分析結構補強環氧樹脂受溫性質之變化 德霖學報, 第17期, 1-10
    [42] Bocanegra-Bernal, M. H. (2004). Hot isostatic pressing (HIP) technology and its applications to metals and ceramics. Journal of Materials Science, 39(21), 6399-6420.
    [43] Chowdhury, A. (2018). Constitutive modelling and Weibull statistical analysis for the porosity-mechanical property correlations in 3% yittria-stabilized zirconia system. International Journal of Refractory Metals and Hard Materials, 70, 246-252.
    [44] Kosmač, T., Oblak, C., Jevnikar, P., Funduk, N., & Marion, L. (1999). The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dental materials, 15(6), 426-433.
    [45] Wang, C., Mao, X., Peng, Y. P., Jiang, B., Fan, J., Xu, Y., ... & Zhao, J. (2017). Preparation and optical properties of infrared transparent 3Y-TZP ceramics. Materials, 10(4), 390.

    無法下載圖示 校內:2024-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE