簡易檢索 / 詳目顯示

研究生: 許煜群
Hsu, Yu-Chun
論文名稱: 金奈米圓盤陣列結構應用於膀胱癌指標之非標記檢測
Gold Nano Disk Array for Label-Free Detection of Bladder Cancer Biomarkers
指導教授: 林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 83
中文關鍵詞: 侷域化表面電漿共振折射率感測器非標籤分子偵測膀胱癌
外文關鍵詞: Localized surface plasmon resonance, refractive index sensor, label-free sensing, bladder cancer
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用嚴格耦合波分析法來進行結構有系統性的調整,除了針對金屬點大小、結構週期及金屬厚度做優化,還進一步利用模擬基板蝕刻的方式進行電場增益與分佈進行討論,發現基板透過蝕刻後會較大的電場增益及分佈區域增加的趨勢,並以此分析法優化後之結果做為後續製作金奈米圓盤陣列的參考。利用低成本且製程時間短之奈米轉印技術製及氧電漿蝕刻的方式在可撓性基板上製作出金奈米圓盤陣列,透過比較結構對於環境感測之靈敏度,最終選定進行後續非標籤分子偵測的結構為直徑200 nm週期400 nm與直徑250 nm週期500 nm的金奈米圓盤陣列,因為轉印後會有壓陷情況發生,故兩種結構皆有經過氧電漿蝕刻(50 W/20 sccm/160 s)。為了增加偵測膀胱癌之非標籤分子的穩定性,也有進行基板清洗方式的討論。
    本研究針對轉印後之金奈米圓盤陣列,透過氧電漿蝕刻的方法,可使其品質因素(Figure-of-Merit)提升3~4倍且在10^(-5) g/mL 玻尿酸(hyaluronic acid)分子檢體偵測上有4.6 nm的訊號變化,對於研究在膀胱癌之非侵入式檢測系統中有很大的前瞻性。

    Sensors designed based on the principle of local surface plasmon resonance have been widely used in non-labeled molecular detection and in local surface plasmon sensors, the periodic metal structure is more suitable for clinical testing .Therefore, this research proposes that the gold nano disk array (GNDA) is used as a sensor for bladder cancer non-label molecules, and the oxygen plasma etching parameters are adjusted to improve the Figure-of-Merit (FOM) value of the sensor. Finally, the FOM value can be increased by 3 to 4 times. In the detection of bladder cancer non-label molecule concentration of 10^(-5) g/mL, a signal displacement of 4.6 nm was obtained.

    摘要 II 致謝 VII 目錄 VIII 表次 XI 圖次 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 理論原理與文獻回顧 4 2.1 奈米壓印微影術介紹 4 2.1.1 熱壓成形式之奈米壓印 5 2.1.2 感光成形式之奈米壓印 5 2.1.3 可撓性模具之奈米轉印 6 2.2 表面電漿共振 6 2.2.1 PSPR原理與機制 7 2.2.2 LSPR原理與機制 8 2.2.3 PSPR與LSPR的比較 9 2.3 表面電漿共振用於折射率感測與生物界面科學之介紹 9 2.4 膀胱癌之簡介 12 第三章 研究方法 20 3.1 金奈米圓盤陣列數值模擬方法 20 3.2 金奈米圓盤陣列結構製作 21 3.2.1 矽母模具製作方法 21 3.2.2 奈米轉印微影術 22 3.3 折射率靈敏度量測架構及方法 25 3.3.1 實驗材料與設備 25 3.3.2 透射光譜及靈敏度的量測 26 3.4 非標籤分子鍵結 27 3.4.1實驗材料 27 3.4.2 HA分子的量測手法 28 3.5 檢視結構所使用機台 30 第四章 實驗與模擬分析結果 37 4.1 金奈米圓盤陣列結構之光學模擬分析 37 4.1.1 固定金厚度及Duty ratio,調變金點的直徑 37 4.1.2 固定金厚度及點的直徑,調變結構週期 37 4.1.3 選定結構,調變金的厚度 38 4.1.4 選定結構及金厚度,調變不同蝕刻程度 38 4.1.5 改變金厚度與蝕刻程度之Sensitivity與近場分析 39 4.2 金奈米圓盤陣列結構之實驗結果 41 4.2.1 透過氧電漿蝕刻製作GNDA結構 43 4.3 金奈米圓盤陣列的靈敏度量測 45 4.4 非標籤分子偵測應用 46 4.4.1 透過GNDA結構檢測HA分子 47 第五章 結論與未來展望 78 5.1 結論 78 5.2 未來展望 78 第六章 參考文獻 80

    1. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors," Sensors and actuators B: Chemical 54, 3-15 (1999).
    2. K. M. Mayer and J. H. Hafner, "Localized surface plasmon resonance sensors," Chemical reviews 111, 3828-3857 (2011).
    3. A. P. Turner, "Biosensors: sense and sensibility," Chemical Society Reviews 42, 3184-3196 (2013).
    4. Q. Zhang, P. Hu, and C. Liu, "Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic gold mushroom caps," Optics Communications 335, 231-236 (2015).
    5. S.-C. Yang, J.-L. Hou, A. Finn, A. Kumar, Y. Ge, and W.-J. Fischer, "Synthesis of multifunctional plasmonic nanopillar array using soft thermal nanoimprint lithography for highly sensitive refractive index sensing," Nanoscale 7, 5760-5766 (2015).
    6. C.-C. Liang, W.-H. Chang, and C.-H. Lin, "Nanotransfer printing of plasmonic nano-pleat arrays with ultra-reduced nanocavity width using perfluoropolyether molds," Journal of Materials Chemistry C 4, 4491-4504 (2016).
    7. C. C. Liang, C. H. Lin, T. C. Cheng, J. Shieh, and H. H. Lin, "Nanoimprinting of flexible polycarbonate sheets with a flexible polymer mold and application to superhydrophobic surfaces," Advanced Materials Interfaces 2, 1500030 (2015).
    8. C.-C. Liang, M.-Y. Liao, W.-Y. Chen, T.-C. Cheng, W.-H. Chang, and C.-H. Lin, "Plasmonic metallic nanostructures by direct nanoimprinting of gold nanoparticles," Optics express 19, 4768-4776 (2011).
    9. V. B. Lokeshwar, C. Öbek, M. S. Soloway, and N. L. Block, "Tumor-associated hyaluronic acid: a new sensitive and specific urine marker for bladder cancer," Cancer research 57, 773-777 (1997).
    10. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 14, 4129-4133 (1996).
    11. S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, "Sub-10 nm imprint lithography and applications," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 15, 2897-2904 (1997).
    12. C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic Engineering 83, 1798-1804, (2006).
    13. J. Shi, J. Chen, D. Decanini, Y. Chen, and A.-M. Haghiri-Gosnet, "Fabrication of metallic nanocavities by soft UV nanoimprint lithography," Microelectronic engineering 86, 596-599 (2009).
    14. M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, and M. L. de la Chapelle, "Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection," Nanoscale research letters 9, 1-6 (2014).
    15. M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, "Fabrication of nanostructures using a UV-based imprint technique," Microelectronic Engineering 53, 233-236 (2000).
    16. M. Komuro, J. Taniguchi, S. Inoue, N. Kimura, Y. Tokano, H. Hiroshima, and S. Matsui, "Imprint characteristics by photo-induced solidification of liquid polymer," Japanese Journal of Applied Physics 39, 7075 (2000).
    17. T. W. Odom, V. R. Thalladi, J. C. Love, and G. M. Whitesides, "Generation of 30− 50 nm structures using easily fabricated, composite PDMS masks," Journal of the American Chemical Society 124, 12112-12113 (2002).
    18. M. Rahlves, M. Rezem, K. Boroz, S. Schlangen, E. Reithmeier, and B. Roth, "Flexible, fast, and low-cost production process for polymer based diffractive optics," Optics express 23, 3614-3622 (2015).
    19. T. T. Truong, R. Lin, S. Jeon, H. H. Lee, J. Maria, A. Gaur, F. Hua, I. Meinel, and J. A. Rogers, "Soft lithography using acryloxy perfluoropolyether composite stamps," Langmuir 23, 2898-2905 (2007).
    20. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," nature 424, 824-830 (2003).
    21. T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    22. C.-C. Yu, K.-H. Ho, H.-L. Chen, S.-Y. Chuang, S.-C. Tseng, and W.-F. Su, "Using the nanoimprint-in-metal method to prepare corrugated metal structures for plasmonic biosensors through both surface plasmon resonance and index-matching effects," Biosensors and Bioelectronics 33, 267-273 (2012).
    23. O. Krasnykov, A. Karabchevsky, A. Shalabney, M. Auslender, and I. Abdulhalim, "Sensor with increased sensitivity based on enhanced optical transmission in the infrared," Optics Communications 284, 1435-1438 (2011).
    24. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," ACS Publications, 668-677(2003).
    25. A. G. Brolo, "Plasmonics for future biosensors," Nature Photonics 6, 709-713 (2012).
    26. A. B. Dahlin, N. J. Wittenberg, F. Höök, and S.-H. Oh, "Promises and challenges of nanoplasmonic devices for refractometric biosensing," Nanophotonics 2, 83-101 (2013).
    27. M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, "Trends and challenges of refractometric nanoplasmonic biosensors: A review," Analytica chimica acta 806, 55-73 (2014).
    28. W.-H. Chang, Z.-Y. Yang, T.-W. Chong, Y.-Y. Liu, H.-W. Pan, and C.-H. Lin, "Quantifying Cell Confluency by Plasmonic Nanodot Arrays to Achieve Cultivating Consistency," ACS sensors 4, 1816-1824 (2019).
    29. K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007).
    30. H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008).
    31. L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, "Strategies for enhancing the sensitivity of plasmonic nanosensors," Nano Today 10, 213-239 (2015).
    32. J. R. Fan, J. Zhu, W. G. Wu, and Y. Huang, "Plasmonic Metasurfaces Based on Nanopin‐Cavity Resonator for Quantitative Colorimetric Ricin Sensing," Small 13, 1601710 (2017).
    33. W.-Y. Chen, C.-H. Lin, and W.-T. Chen, "Plasmonic phase transition and phase retardation: essential optical characteristics of localized surface plasmon resonance," Nanoscale 5, 9950-9956 (2013).
    34. R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. O. Länk, A. Dmitriev, P. Vavassori, I. V. Shvets, and M. Käll, "Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces," Nanoscale 8, 10576-10581 (2016).
    35. K.-L. Lee, J.-B. Huang, J.-W. Chang, S.-H. Wu, and P.-K. Wei, "Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays," Scientific reports 5, 8547 (2015).
    36. P. Offermans, M. C. Schaafsma, S. R. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, "Universal scaling of the figure of merit of plasmonic sensors," ACS nano 5, 5151-5157 (2011).
    37. K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, "Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements," Nano letters 12, 1655-1659 (2012).
    38. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," in Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific, 2010), pp. 308-319.
    39. B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, "LSPR-based nanobiosensors," nano today 4, 244-251 (2009).
    40. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, "Searching for better plasmonic materials," Laser & Photonics Reviews 4, 795-808 (2010).
    41. L. Feuz, M. P. Jonsson, and F. Höök, "Material-selective surface chemistry for nanoplasmonic sensors: optimizing sensitivity and controlling binding to local hot spots," Nano letters 12, 873-879 (2012).
    42. M. A. Otte and B. Sepulveda, "Figures of merit for refractometric LSPR biosensing," in Nanoplasmonic Sensors (Springer, 2012), pp. 317-331.
    43. V. B. Lokeshwar, C. ÖBek, H. T. Pham, D. Wei, M. J. Young, R. C. Duncan, M. S. Soloway, and N. L. Block, "Urinary hyaluronic acid and hyaluronidase: markers for bladder cancer detection and evaluation of grade," The Journal of urology 163, 348-356 (2000).
    44. Y. Chen, "Applications of nanoimprint lithography/hot embossing: a review," Applied Physics A 121, 451-465 (2015).
    45. J. Li, C. Chen, L. Lagae, and P. Van Dorpe, "Nanoplasmonic sensors with various photonic coupling effects for detecting different targets," The Journal of Physical Chemistry C 119, 29116-29122 (2015).
    46. J. A. Jackman, A. R. Ferhan, and N.-J. Cho, "Nanoplasmonic sensors for biointerfacial science," Chemical Society Reviews 46, 3615-3660 (2017).
    47. E. D. Palik, Handbook of optical constants of solids (Academic press, 1998), Vol. 3.
    48. A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, "Improving the instrumental resolution of sensors based on localized surface plasmon resonance," Analytical chemistry 78, 4416-4423 (2006).
    49. Zhang, Lu, Yacine Mazouzi, Michele Salmain, Bo Liedberg, Souhir Boujday. "Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications." Biosensors and Bioelectronics ,112370(2020).

    無法下載圖示 校內:2025-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE