| 研究生: |
張家齊 Chang, Chia-Chi |
|---|---|
| 論文名稱: |
毫米波頻段行動隨意網路採用指向性天線之路由協定性能分析 Performance Analysis of Routing Protocols Using Directional Antennas in mm-Wave Mobile Ad Hoc Networks |
| 指導教授: |
蘇賜麟
Su, Szu-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 毫米波通訊 、行動隨意網路 、路由協定 、指向性天線 |
| 外文關鍵詞: | mm-Wave, Mobile Ad Hoc Network, Routing Protocol, Directional Antennas |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在無線隨意(ad hoc)網路中由於缺少中控基地台,且受限於用戶間無線傳輸距離(傳輸功率的限制),用戶需透過多次跳躍(multi-hop)方式以達成遠距離溝通,因此路由協定為此類系統最重要的設計考量。而由於無線行動通訊需求日益增長,可提供Gbps資料傳輸速率的毫米波通訊已為多數系統所採用,例如802.11ad、802.11ay,及第五代(5G)行動通訊系統等。本論文即針對運作於毫米波通道的行動隨意網路,研討其系統運作之網路/MAC/實體層設計。目前大多數討論無線隨意網路路由協定相關文獻都採用全向性天線設計,但毫米波通道有著高訊號衰減及低穿透力特性,通常須利用指向性的天線增益以彌補傳輸損失。於本論文中,針對無線隨意網路系統常採用的Ad-hoc on demand vector routing (AODV)、Location-aided routing (LAR)與Greedy perimeter stateless routing (GPSR)三種路由協定,模擬並分析比較指向性及全向性天線的整體系統性能。在系統模擬中,本論文分別考慮長時間傳送的虛擬電路(virtual circuit)及各別封包傳送的資料包(datagram)兩種應用設計。針對前者,性能分析著重於路徑搜尋(route-discovery)階段的系統效能;針對後者,性能分析則著重於傳送資料量(throughput)。經由模擬結果發現,指向性天線與全向性天線相比,在路由協定中不易造成網路斷層(network gap)問題,此外指向性天線增益使得跳躍個數(hop numbers)少而降低封包延遲時間,且可在資料傳送階段提升資料傳輸速率。
Due to the lack of central coordinator and the restriction of wireless transmission range (limited transmitted power) in wireless ad hoc networks, the long-distance communication can be accomplished only through multi-hop transmissions. Hence, a proper routing protocol is the most important design issue for such the network systems. Nowadays, in order to achieve Gigabits transmission-rate, mm-Wave communication has been adopted by several commercial systems, such as IEEE 802.11ad, IEEE 802.11ay and 5G mobile networks. Thus, this thesis focuses on the design of Network/MAC/Physical layer protocols for the millimeter-wave mobile ad hoc networks.
For mobile ad hoc networks, most published literature discussed the routing protocols with omni-directional antennas. However, the directional antennas should be adopted to compensate the high path-loss of mm-Wave signals. In this thesis, we analyze the performance of three well-known routing protocols, namely, Ad-hoc on demand vector routing (AODV), Location-aided routing (LAR) and Greedy perimeter stateless routing (GPSR), with directional and omni-directional antennas by system simulation. We consider two types of data-transmissions, i.e., virtual circuit and datagram.
The simulation results show that the use of directional antennas for mm-Wave systems not only solve the network gap problem, but also reduce the packet delay due to the decreasing hop numbers and increasing transmission rate.
[1] R. Roy Choudhury, N.H. Vaidya, “Performance of ad hoc routing using directional antennas,” Journal of Ad Hoc Networks, 2005
[2] V. Kumar, S. Jain and S. Tiwari, “Performance of Routing Protocols in MANETs with Node Density and Mobility using Omni and Directional Antenna” Special Issue of International Journal of Computer Applications on Wireless Communication and Mobile Networks, No.11., pp.51-55, Jan.2012.
[3] G. Jayasree, K.P. Indulekha and B. Malarkodi, “Directional Antenna Based Efficient Location Aware Routing in Mobile Adhoc Network,” ICTACT Journal on Communication Technology. Jun2018, Vol. 9 Issue 2, p1765-1775. 11p.
[4] G. Jayasree, K. P. Indulekha, B. T. Vijay, and B. Malarkodi, “Optimal Location Aided Routing with Directional Antennas in Mobile Ad Hoc Networks,” International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI) 2018, pp. 148-159.
[5] Karp, B.; Kung, H.T. GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, Boston, MA, USA, 6–11 August 2000; pp. 243–254.
[6] IEEE802.11ad-2012, “IEEE Standard for Information Technology — Telecommunications and Information Exchange between Systems — Local and Metropolitan Area Networks — Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60GHz Band,” IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012), 2012, pp. 1–628.
[7] S. R. Saunders, A. Aragón-Zavala, Antennas and Propagation for Wireless Communication Systems, 2nd Edition, 2007
[8] Robert J. Mailloux, Phased Array Antenna Handbook, Artech Print on Demand Second Edition, 2005
[9] Recommendation H.264, Advanced video coding for generic audiovisual services, 2019 ITU-T
[10] Recommendation G.729, Coding of speech at 8 kbit/s using conjugate-structure algebraic-code-excited linear prediction (CS-ACELP), 2012 ITU-T
[11] IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard 802.11-2016, pp. 1–3534, Dec. 2016.
[12] C.E. Perkins, E.M. Belding-Royer, S.R. Das, Ad hoc on-demand distance vector (AODV) routing, IETF RFC3561, July 2003.
[13] Ko, Y., Vaidya, N.H. Location‐Aided Routing (LAR) in mobile ad hoc networks. Wireless Networks 6, 307–321 (2000).
[14] Karp, B.; Kung, H.T. GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, Boston, MA, USA, 6–11 August 2000; pp. 243–254.
[15] T. Noguchi and T. Kobayashi, “Adaptive location-aware routing with directional antennas in mobile adhoc networks,” in Proc. IEEE Comput. Netw. Commun. (ICNC), 2017, pp. 1006–1011.
[16] J. Chen, X. Yin, L. Tian, N. Zhang, Y. He, X. Cheng, W. Duan, and S. R. Boqué, “Measurement-based LoS/NLoS channel modeling for hot-spot urban scenarios in UMTS networks,” International Journal of Antennas and Propagation, no. 454976, 2014.
[17] AI. Sulyman, H. Seleem, A. Alwarafy, K. Humadi, et al., “Effects of Solar Radio Emissions on Outdoor Propagation Path Loss Models at 60 GHz bands for Access/backhaul links and D2D communications,” in IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6624-6635, Dec. 2017.
校內:2025-08-31公開