| 研究生: |
吳秉芳 Wu, Ping-Fang |
|---|---|
| 論文名稱: |
包含偏心效應之球銑刀銑削力解析模式及線上偏心幾何判別 An analytical Model of Milling Force in Ball-end Milling with Runout and Its Application to On-Line Identification of Cutter Runou |
| 指導教授: |
王俊志
Wang, J-J Junz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 球銑刀 、偏心 、切屑負載 、銑削力 、偏心幾何判別 |
| 外文關鍵詞: | milling forces, identification of runout geometry, Ball-end milling, chip load, runout |
| 相關次數: | 點閱:116 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本文主要針對球銑刀在受到偏心影響時,推導其切屑厚度受偏心影響的表示式,並且探討因切屑負載變化而導致的切削區域變動以及始進角與終切角變化,發現偏心值對於每刃進給量比值的大小直接影響到切削區域的變化。再以推導的切屑厚度為基礎,進而推導球銑刀受偏心影響的銑削力解析模式,發現偏心會導致在主軸轉速頻率上產生一銑削力,並針對偏心幾何參數,即偏心量r及偏心角度l的變化及各種加工條件探討其銑削力變化情形。
在偏心幾何判別應用方面,應用銑削力解析模式,可以由實驗銑削力逆求偏心幾何。利用兩次切削實驗的平均力或是一次實驗第一諧合力來判別切削常數,並以判別的切削常數為基礎,透過因為偏心而在主軸頻率所產生的銑削力來判別動態的偏心幾何。最後再透過各種不同進給的槽銑實驗來驗證模式,而得到一致性的判別結果。
Abstract
This thesis presents an analytical model for the chip load variation and milling forces in ball-end milling with cutter runout. The cutting region and chip load variation is first discussed and an analytical expression for the chip thickness is discussed in this paper. Based on the chip thickness expression, the force model of ball-end milling with cutter runout is established. The force model shows the that the presence of cutter runout causes a significant change in the cutting force at the spindle frequency. The variation of milling force is shown to vary with the change of runout geometry, the runout magnitude, r, and the angular position, l.
Method for identification of cutting costants and runout geometry are presented. Two methods are presented to identify these cutting constans. The first method uses only the first harmonic components of the milling forces, and the second methods utilizes the average forces with two feeds per tooth. Based on the identified cutting constants, the identification of runout geometry is developed by using runout component cutting forces. Finally,the milling force model and the identification of runout geometry is verified through milling experiments.
參考文獻
[1]Kline W. A., DeVor R. E., Snareef I.A., ”The Prediction of Surface Accuracy in End Milling, ”J. of Engineering for Industry, Vol. 104, pp. 272-278, August 1982.
[2]Ber A., Goldblatt M., ”The Influence of Temperature Gradient on Cutting Tool’s life, ”CIRP annals, Vol. 38, pp.69-73, 1989.
[3]Kline W. A., and DeVor R. E., ”The Effect of Runout on Cutting Geometry and Forces in End Milling,” International Journal of Machine Tool Design and Research, 23, pp.123-140, 1983.
[4]Ber, A., and Feldman, D., “The Influence of Radial Location on the Wear Behavior if Multi-Tooth Face Milling ,” Annals of the CIRP, Vol. 25, pp.19, 1976.
[5]Fu, H. J., Devor, R. E. and Kapoor, S. G., “A Mechanistic Model for the Preduction of the Force System in Face Milling Operations,” ASME Journal of Engineering for Industry, February, 106, pp.81-88, 1984.
[6]Gu, F., Kapoor, S. G., Devor, R. E., and Bandyopadhyay, P., “An Approach to On-line Cutter Runout Estimation in Face Milling,” Transactions of NAMRC/SME, pp.240-247, 1991.
[7]Armarego, E. J. A., and Despand, N. P., “Computerized Predictive Cutting Model for Cutting Forces in End-Milling Including Eccentricity Effects,” Annals of CIRP, Vol. 38, pp. 45-49, 1989.
[8]Wang, J. J., and Liang, S.Y., “Chip Load Kinematics in Milling with Radial Cutter Runout,” ASME Journal of Engineering for Industry, February, Vol.118, No.1, pp.111-116. Feb. 1996.
[9]Liang, S.Y., and Wang, J. J., “Milling Force Convolution Modeling for Identification of Cutter Axis Offset, “ International Journal of Machine Tools and Manufacture, Vol.34, No.8, pp.1177-1190, 1994.
[10]Eneres, W. J., DeVor, R.E. and Kapoor S. G., “A Dual-Mechanism Approach to the Prediction of Machining Forces,” ASME Journal of Engineering for Industry, Vol. 117, pp. 526-541, 1995.
[11]Altintas, Y. and Lee, P. “Prediction of Ball-End Milling Forces From Orthogonal Cutting Data,” International Journal of Machine Tools & Manufacture, Vol. 36, pp. 1059-1072, 1996.
[12]Wang J. J., “Convolution Modeling of Milling Force System and Its Application to Cutter Runout Identification, “ph.D. thesis, School of Mechanical Engineering, Georgia Institute of Technology, April, 1992.
[13]Lazoglu, I. And Liang, S. Y., “Analytical Modeling of Ball-End Milling Force,“ International Journal of Machining Science and Technology.
[14]Zeng , C. M., Wang, J. J., “Identification of Shearing and Ploughing Cutting Constant from Average Forces in Ball-End Milling,” Submited to International Journal of Machine Tools & Manufacture.
[15]黃朝鈺 ,”球銑刀之步進銑削之銑削力及穩定性為基礎” , 國立成功大學機械研究所 ,九十年碩士論文.
[16]Wang, J.-J., Liang, S.Y. and Book, W.J., “Analysis of milling via Angular Convolution, “ Sensors Controls, and Quality issues in Manufacturing, PED-Vol. 555,pp.135-150, ASME Winter Annual Meeting Atlanta, GA, Dec. 1991.