| 研究生: |
周冠賢 Chou, Kuan-Hsien |
|---|---|
| 論文名稱: |
探討磷酸酶 PP2A 調節次單元 B56γ3 對於細胞運動的調節 Investigating the Regulation of Cell Motility by the B56γ3 Regulatory Subunit of PP2A |
| 指導教授: |
蔣輯武
Chiang, Chi-Wu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 蛋白質磷酸酶 2A 型 、調節性次單元 B 、樁蛋白 、細胞運動 |
| 外文關鍵詞: | PP2A, B56γ3, paxillin, cell motility |
| 相關次數: | 點閱:140 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蛋白質磷酸酶 2A 型 (PP2A) 屬於一種三元複合體的酵素,由三種次單元所構成,依據次單元功能分別為定義為結構的 A 次單元,代表催化的 C 次單元以及具有調節能力的 B 次單元。磷酸酶 PP2A 目前被認為為在癌症中扮演了重要的抑癌角色。在許多關於調節性次單元 B 的研究當中,B56γ 次單元在過去被認為在 PP2A 調節癌化過程中扮演了一個很重要的角色,其可以透過調控細胞的生長以及運動來達到抑癌的作用。儘管如此,截至目前為止 B56γ 如何調控細胞運動的機制仍然不是很清楚,而且個別的 B56γ 次單元異構體是否扮演不同的角色也不是很確定。因此,我們想要探究帶有 B56γ3 調節次單元的磷酸酶 PP2A 對於細胞的運動機制的影響。首先,我們用免疫螢光分析法觀察;發現調節次單元 B56γ3 會與一個參與在形成細胞焦點黏著斑 (focal adhesion) 上的蛋白分子樁蛋白 (paxillin) 共同坐落在細胞焦點黏著斑上,接著利用共同免疫沉澱法我們也證明帶有 B56γ3 調節次單元的磷酸酶 PP2A 與樁蛋白有共同存在於一個複合體。之後,我們利用共同免疫沉澱法及試管中的蛋白質交互作用沉降方法證明 B56γ3 調節次單元可以透過樁蛋白之蛋白分子上的 LD 區段與其直接的結合。當進一步探討 PP2A 調節次單元 B56γ3 對樁蛋白的兩個分別調節細胞的型態以及爬行的重要的磷酸化位點,包括絲胺酸 83 以及絲胺酸 178,我們發現樁蛋白上的絲胺酸 178 之磷酸化可以被調節次單元 B56γ3 選擇性地調控,並且這樣的調控不是透過調控樁蛋白上游的 JNK 激酶的訊息傳遞路徑而達到。此外我們也發現樁蛋白的絲胺酸 83 的磷酸化會被 B56γ1 調節次單元所調控。相反的是,絲胺酸 83 以及絲胺酸 178 的磷酸化都不會被 B56α 所調控。更進一步,我們利用試管中去磷酸化反應實驗證明樁蛋白上磷酸化的絲胺酸 178 可以被帶有 B56γ3 調節次單元的 PP2A 去磷酸。因為樁蛋白上的磷酸化位點絲胺酸 178 對於細胞骨架蛋白分子的重組或細胞焦點黏著斑上的形成扮演了很重要的角色,所以,我們發現當 B56γ3 於細胞中過度表現的時候,細胞的一般運動以及在體外傷痕癒合分析下的運動能力會下降。相反地,當以核醣核酸干擾法將 B56γ3 表現減低的時候,細胞的運動以及在傷痕癒合的運動速度會上升。這些現象我們在不同類型的細胞株,包括 NIH3T3,HeLa 以及食道癌細胞 TE7 以及 BIC 皆得到相似的結果。此外我們也發現當 B56γ3 過度表現的時候,在以 transwell 侵襲移行運動分析法分析 NIH3T3 以及 HeLa 細胞穿透模板的侵襲會受到抑制,相反地,當 B56γ3 表現下降的時候,細胞的侵襲移行運動能力會上升。總而言之,我們的結果證明調節次單元 B56γ3 可以選擇性地調控樁蛋白絲胺酸 178 的磷酸化表現,並且進一步的調控細胞運動以及移行的能力。
Protein phosphatase 2A (PP2A) is a heterotrimeric enzyme composed of a structural A subunit, a catalytic C subunit, and a variable regulatory B subunit, and is thought to play a tumour suppressor role. Among various B subunits studied, the B56γ subunits of PP2A play an important role in tumour suppressor function of PP2A by regulating cell proliferation and motility. Previous studies have shown that mouse B56γ subunits modulate phosphorylation of paxillin and regulate cell motility. However, the role of B56γ in regulating motility and migration of human cancer cells and the molecular mechanism by which B56γ regulated paxillin phosphorylation has not yet been identified. Herein, we elucidate the mechanism for the regulation of cell motility by B56γ3-containing PP2A. We showed co-localization of B56γ3 and paxillin, a key scaffold protein of focal adhesion, and demonstrated association of paxillin and B56γ3-containing PP2A by co-immunoprecipitation (Co-IP). By Co-IP and in vitro pull-down analysis, we found that paxillin directly interacted with B56γ3 through the LD domain. Next we investigated the role of B56γ3 in regulation of two key residues of paxillin, Ser83 and Ser178, were previously shown to be involved in regulating cell morphology and migration, respectively, and found that B56γ3 selectively regulated phosphorylation of Ser178, but not Ser83, without affecting the activity of upstream kinase JNK. In comparison to B56γ3, paxillin phosphorylation of Ser83 was preferentially regulated by B56γ1, and neither phosphorylation at Ser83 or Ser178 was affected by B56α. Furthermore, we demonstrated B56γ3-containing PP2A directly catalyzed dephosphorylation of paxillin Ser178 by in vitro dephosphorylation assay. Consistent with the role of paxillin phosphorylation at Ser178 in regulating focal adhesion and cytoskeleton rearrangement, cells overexpressing B56γ3 displayed reduced stress fibers. Furthermore, B56γ3 overexpression reduced cell motility and wound-healing migration, whereas silencing B56γ3 expression markedly enhanced motility and migration in NIH3T3, HeLa, and human esophageal cancer cells. We also demonstrated that the ability of cell invasion was reduced when cells were overexpressed with B56γ3, whereas silencing B56γ3 expression markedly enhanced cell invasion in NIH3T3 and HeLa cells. In conclusion, our data demonstrate that the B56γ3 subunit selectively directs PP2A to regulate phosphorylation of paxillin at Ser178 and regulate cell motility and migration.
1
Cho, U. S. & Xu, W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature 445(7123), 53-57 (2007)
2
Strack, S. et al. Protein phosphatase 2A holoenzyme assembly: identification of contacts between B-family regulatory and scaffolding A subunits. J Biol Chem 277(23), 20750-20755 (2002)
3
Stone, S. R., Hofsteenge, J. & Hemmings, B. A. Molecular cloning of cDNAs encoding two isoforms of the catalytic subunit of protein phosphatase 2A. Biochemistry 26(23), 7215-7220 (1987)
4
Khew-Goodall, Y. & Hemmings, B. A. Tissue-specific expression of mRNAs encoding alpha- and beta-catalytic subunits of protein phosphatase 2A. FEBS Lett 238(2), 265-268 (1988)
5
Schonthal, A. H. Role of serine/threonine protein phosphatase 2A in cancer. Cancer Lett 170(1), 1-13 (2001)
6
Perrotti, D. & Neviani, P. Protein phosphatase 2A (PP2A), a drugable tumor suppressor in Ph1(+) leukemias. Cancer Metastasis Rev 27(2), 159-168 (2008)
7
Hemmings, B. A. et al. alpha- and beta-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry 29(13), 3166-3173 (1990)
8
Hendrix, P. et al. Analysis of subunit isoforms in protein phosphatase 2A holoenzymes from rabbit and Xenopus. J Biol Chem 268(10), 7330-7337 (1993)
9
Bosch, M. et al. The PR55 and PR65 subunits of protein phosphatase 2A from Xenopus laevis. molecular cloning and developmental regulation of expression. Eur J Biochem 230(3), 1037-1045 (1995)
10
Eichhorn, P. J., Creyghton, M. P. & Bernards, R. Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta 1795(1), 1-15 (2009)
11
Sontag, E. Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cell Signal 13(1), 7-16 (2001)
12
Tehrani, M. A., Mumby, M. C. & Kamibayashi, C. Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. J Biol Chem 271(9), 5164-5170 (1996)
13
Hui, L. et al. mTOR-dependent suppression of protein phosphatase 2A is critical for phospholipase D survival signals in human breast cancer cells. J Biol Chem 280(43), 35829-35835 (2005)
14
Fujiki, H. & Suganuma, M. Tumor promotion by inhibitors of protein phosphatases 1 and 2A: the okadaic acid class of compounds. Adv Cancer Res 61, 143-194 (1993)
15
Walsh, A. H., Cheng, A. & Honkanen, R. E. Fostriecin, an antitumor antibiotic with inhibitory activity against serine/threonine protein phosphatases types 1 (PP1) and 2A (PP2A), is highly selective for PP2A. FEBS Lett 416(3), 230-234 (1997)
16
Kawada, M., Amemiya, M., Ishizuka, M. & Takeuchi, T. Cytostatin, an inhibitor of cell adhesion to extracellular matrix, selectively inhibits protein phosphatase 2A. Biochim Biophys Acta 1452(2), 209-217 (1999)
17
Wada, S. et al. Rubratoxin A specifically and potently inhibits protein phosphatase 2A and suppresses cancer metastasis. Cancer Sci 101(3), 743-750 (2010)
18
Wang, S. S. et al. Alterations of the PPP2R1B gene in human lung and colon cancer. Science 282(5387), 284-287 (1998)
19
Ruediger, R., Pham, H. T. & Walter, G. Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene 20(15), 1892-1899 (2001)
20
Takagi, Y. et al. Alterations of the PPP2R1B gene located at 11q23 in human colorectal cancers. Gut 47(2), 268-271 (2000)
21
Esplin, E. D. et al. The glycine 90 to aspartate alteration in the Abeta subunit of PP2A (PPP2R1B) associates with breast cancer and causes a deficit in protein function. Genes Chromosomes Cancer 45(2), 182-190 (2006)
22
Baysal, B. E. et al. A high-resolution integrated map spanning the SDHD gene at 11q23: a 1.1-Mb BAC contig, a partial transcript map and 15 new repeat polymorphisms in a tumour-suppressor region. Eur J Hum Genet 9(2), 121-129 (2001)
23
Calin, G. A. et al. Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene 19(9), 1191-1195 (2000)
24
Chou, H. C. et al. Alterations of tumour suppressor gene PPP2R1B in hepatocellular carcinoma. Cancer Lett 253(1), 138-143 (2007)
25
Sablina, A. A. et al. The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell 129(5), 969-982 (2007)
26
Yang, J. & Phiel, C. Functions of B56-containing PP2As in major developmental and cancer signaling pathways. Life Sci 87(23-26), 659-666 (2010)
27
Arnold, H. K. & Sears, R. C. Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Mol Cell Biol 26(7), 2832-2844 (2006)
28
Li, H. H., Cai, X., Shouse, G. P., Piluso, L. G. & Liu, X. A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. EMBO J 26(2), 402-411 (2007)
29
Margolis, S. S. et al. Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell 127(4), 759-773 (2006)
30
Shouse, G. P., Nobumori, Y., Panowicz, M. J. & Liu, X. ATM-mediated phosphorylation activates the tumor-suppressive function of B56gamma-PP2A. Oncogene (2011)
31
Koma, Y. I., Ito, A., Watabe, K., Kimura, S. H. & Kitamura, Y. A truncated isoform of the PP2A B56gamma regulatory subunit reduces irradiation-induced Mdm2 phosphorylation and could contribute to metastatic melanoma cell radioresistance. Histol Histopathol 19(2), 391-400 (2004)
32
Chen, W. et al. Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5(2), 127-136 (2004)
33
Ito, A. et al. A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. EMBO J 19(4), 562-571 (2000)
34
Muneer, S. et al. Genomic organization and mapping of the gene encoding the PP2A B56gamma regulatory subunit. Genomics 79(3), 344-348 (2002)
35
Letourneux, C., Rocher, G. & Porteu, F. B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J 25(4), 727-738 (2006)
36
Lee, T. Y. et al. The B56gamma3 regulatory subunit of protein phosphatase 2A (PP2A) regulates S phase-specific nuclear accumulation of PP2A and the G1 to S transition. J Biol Chem 285(28), 21567-21580 (2010)
37
Franz, C. M., Jones, G. E. & Ridley, A. J. Cell migration in development and disease. Dev Cell 2(2), 153-158 (2002)
38
Friedl, P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 16(1), 14-23 (2004)
39
Larsen, M., Tremblay, M. L. & Yamada, K. M. Phosphatases in cell-matrix adhesion and migration. Nat Rev Mol Cell Biol 4(9), 700-711 (2003)
40
Wilson, A. K., Takai, A., Ruegg, J. C. & de Lanerolle, P. Okadaic acid, a phosphatase inhibitor, decreases macrophage motility. Am J Physiol 260(2 Pt 1), L105-112 (1991)
41
Mulrooney, J., Foley, K., Vineberg, S., Barreuther, M. & Grabel, L. Phosphorylation of the beta1 integrin cytoplasmic domain: toward an understanding of function and mechanism. Exp Cell Res 258(2), 332-341 (2000)
42
Kim, S. M. et al. Modulation of Thr phosphorylation of integrin beta1 during muscle differentiation. J Biol Chem 279(8), 7082-7090 (2004)
43
Jackson, J. L. & Young, M. R. Protein phosphatase-2A modulates the serine and tyrosine phosphorylation of paxillin in Lewis lung carcinoma tumor variants. Clin Exp Metastasis 19(5), 409-415 (2002)
44
Tar, K. et al. Role of protein phosphatase 2A in the regulation of endothelial cell cytoskeleton structure. J Cell Biochem 98(4), 931-953 (2006)
45
Pellegrin, S. & Mellor, H. Actin stress fibres. J Cell Sci 120(Pt 20), 3491-3499 (2007)
46
Turowski, P., Myles, T., Hemmings, B. A., Fernandez, A. & Lamb, N. J. Vimentin dephosphorylation by protein phosphatase 2A is modulated by the targeting subunit B55. Mol Biol Cell 10(6), 1997-2015 (1999)
47
Ambach, A. et al. The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur J Immunol 30(12), 3422-3431 (2000)
48
Lo, S. H. Focal adhesions: what's new inside. Dev Biol 294(2), 280-291 (2006)
49
Pradhan, S. & Farach-Carson, M. C. Mining the extracellular matrix for tissue engineering applications. Regen Med 5(6), 961-970 (2010)
50
Critchley, D. R. Cytoskeletal proteins talin and vinculin in integrin-mediated adhesion. Biochem Soc Trans 32(Pt 5), 831-836 (2004)
51
Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88(1), 39-48 (1997)
52
Hoffmann, B. & Schafer, C. Filopodial focal complexes direct adhesion and force generation towards filopodia outgrowth. Cell Adh Migr 4(2), 190-193 (2010)
53
Wang, Y. et al. Visualizing the mechanical activation of Src. Nature 434(7036), 1040-1045 (2005)
54
Schaller, M. D. Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20(44), 6459-6472 (2001)
55
Tumbarello, D. A., Brown, M. C. & Turner, C. E. The paxillin LD motifs. FEBS Lett 513(1), 114-118 (2002)
56
Weng, Z., Taylor, J. A., Turner, C. E., Brugge, J. S. & Seidel-Dugan, C. Detection of Src homology 3-binding proteins, including paxillin, in normal and v-Src-transformed Balb/c 3T3 cells. J Biol Chem 268(20), 14956-14963 (1993)
57
Brown, M. C., Perrotta, J. A. & Turner, C. E. Serine and threonine phosphorylation of the paxillin LIM domains regulates paxillin focal adhesion localization and cell adhesion to fibronectin. Mol Biol Cell 9(7), 1803-1816 (1998)
58
Wiseman, P. W. et al. Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy. J Cell Sci 117(Pt 23), 5521-5534 (2004)
59
Webb, D. J. et al. Paxillin phosphorylation sites mapped by mass spectrometry. J Cell Sci 118(Pt 21), 4925-4929 (2005)
60
Lamorte, L., Rodrigues, S., Sangwan, V., Turner, C. E. & Park, M. Crk associates with a multimolecular Paxillin/GIT2/beta-PIX complex and promotes Rac-dependent relocalization of Paxillin to focal contacts. Mol Biol Cell 14(7), 2818-2831 (2003)
61
Huang, C., Borchers, C. H., Schaller, M. D. & Jacobson, K. Phosphorylation of paxillin by p38MAPK is involved in the neurite extension of PC-12 cells. J Cell Biol 164(4), 593-602 (2004)
62
Ishibe, S., Joly, D., Liu, Z. X. & Cantley, L. G. Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Mol Cell 16(2), 257-267 (2004)
63
Huang, C., Rajfur, Z., Borchers, C., Schaller, M. D. & Jacobson, K. JNK phosphorylates paxillin and regulates cell migration. Nature 424(6945), 219-223 (2003)
64
Huang, C., Jacobson, K. & Schaller, M. D. A role for JNK-paxillin signaling in cell migration. Cell Cycle 3(1), 4-6 (2004)
65
Igishi, T. et al. Divergent signaling pathways link focal adhesion kinase to mitogen-activated protein kinase cascades. Evidence for a role of paxillin in c-Jun NH(2)-terminal kinase activation. J Biol Chem 274(43), 30738-30746 (1999)
66
Jagadeeswaran, R. et al. Paxillin is a target for somatic mutations in lung cancer: implications for cell growth and invasion. Cancer Res 68(1), 132-142 (2008)
67
Jenq, W., Cooper, D. R. & Ramirez, G. Integrin expression on cell adhesion function and up-regulation of P125FAK and paxillin in metastatic renal carcinoma cells. Connect Tissue Res 34(3), 161-174 (1996)
68
Tremblay, L. et al. Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int J Cancer 68(2), 164-171 (1996)
69
Vadlamudi, R., Adam, L., Tseng, B., Costa, L. & Kumar, R. Transcriptional up-regulation of paxillin expression by heregulin in human breast cancer cells. Cancer Res 59(12), 2843-2846 (1999)
70
Fernandez-Valle, C. et al. Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology. Nat Genet 31(4), 354-362 (2002)
71
Das, K., Bohl, J. & Vande Pol, S. B. Identification of a second transforming function in bovine papillomavirus type 1 E6 and the role of E6 interactions with paxillin, E6BP, and E6AP. J Virol 74(2), 812-816 (2000)
72
Brown, M. C. & Turner, C. E. Paxillin: adapting to change. Physiol Rev 84(4), 1315-1339 (2004)
73
Chie, W. C., Tsai, C. J., Chiang, C. & Lee, Y. C. Quality of life of patients with oesophageal cancer in Taiwan: validation and application of the Taiwan Chinese (Mandarin) version of the EORTC QLQ-OES18: a brief communication. Qual Life Res 19(8), 1127-1131 (2010)
74
Fernandes, M. L., Seow, A., Chan, Y. H. & Ho, K. Y. Opposing trends in incidence of esophageal squamous cell carcinoma and adenocarcinoma in a multi-ethnic Asian country. Am J Gastroenterol 101(7), 1430-1436 (2006)
75
Tai, S. Y. et al. Cigarette smoking and alcohol drinking and esophageal cancer risk in Taiwanese women. World J Gastroenterol 16(12), 1518-1521 (2010)
76
Hongo, M., Nagasaki, Y. & Shoji, T. Epidemiology of esophageal cancer: Orient to Occident. Effects of chronology, geography and ethnicity. J Gastroenterol Hepatol 24(5), 729-735 (2009)
77
Szumilo, J. [Epidemiology and risk factors of the esophageal squamous cell carcinoma]. Pol Merkur Lekarski 26(151), 82-85 (2009)
78
Holmes, R. S. & Vaughan, T. L. Epidemiology and pathogenesis of esophageal cancer. Semin Radiat Oncol 17(1), 2-9 (2007)
79
Wu, I. C. et al. Osteopontin expression in squamous cell cancer of the esophagus. World J Surg 32(9), 1989-1995 (2008)
80
Metzger, R., Schneider, P. M., Warnecke-Eberz, U., Brabender, J. & Holscher, A. H. Molecular biology of esophageal cancer. Onkologie 27(2), 200-206 (2004)
81
Qu, W. et al. CIP2A is overexpressed in esophageal squamous cell carcinoma. Med Oncol (2010)
82
Junttila, M. R. et al. CIP2A inhibits PP2A in human malignancies. Cell 130(1), 51-62 (2007)
83
Sontag, J. M. & Sontag, E. Regulation of cell adhesion by PP2A and SV40 small tumor antigen: an important link to cell transformation. Cell Mol Life Sci 63(24), 2979-2991 (2006)
84
Zimerman, B., Volberg, T. & Geiger, B. Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading. Cell Motil Cytoskeleton 58(3), 143-159 (2004)
85
Kimura, K., Teranishi, S., Yamauchi, J. & Nishida, T. Role of JNK-dependent serine phosphorylation of paxillin in migration of corneal epithelial cells during wound closure. Invest Ophthalmol Vis Sci 49(1), 125-132 (2008)
86
Schoenwaelder, S. M. & Burridge, K. Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 11(2), 274-286 (1999)
87
Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3(5), 362-374 (2003)
88
Shouse, G. P., Nobumori, Y. & Liu, X. A B56gamma mutation in lung cancer disrupts the p53-dependent tumor-suppressor function of protein phosphatase 2A. Oncogene 29(27), 3933-3941 (2010)
89
Deakin, N. O. & Turner, C. E. Paxillin comes of age. J Cell Sci 121(Pt 15), 2435-2444 (2008)
90
Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7), 445-457 (2009)
91
Parri, M. & Chiarugi, P. Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 8, 23 (2010)
92
Roger, L., Gadea, G. & Roux, P. Control of cell migration: a tumour suppressor function for p53? Biol Cell 98(3), 141-152 (2006)
93
Besson, A., Gurian-West, M., Schmidt, A., Hall, A. & Roberts, J. M. p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 18(8), 862-876 (2004)
94
Muller, P. A., Vousden, K. H. & Norman, J. C. p53 and its mutants in tumor cell migration and invasion. J Cell Biol 192(2), 209-218 (2011)
95
Baldassarre, G. et al. p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell 7(1), 51-63 (2005)