簡易檢索 / 詳目顯示

研究生: 陳雅萍
Chen, Ya-Ping
論文名稱: 1,4-雙(4-胺基-2-三氟甲基苯氧)苯合成之含氟聚醯胺與聚醯胺醯亞胺及其性質
Syntheses and Properties of Fluorinated Polyamides and Poly(amide-imide)s Based on 1,4-Bis(4-amino-2-trifluoromethylphenoxy)benzen
指導教授: 吳逸謨
Woo, E.M.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 70
中文關鍵詞: 含氟聚醯胺含氟聚醯胺醯亞胺
外文關鍵詞: Fluorinated Poly(amide-imide)s, Fluorinated Polyamides
相關次數: 點閱:83下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   第一部分中,一系列含氟之有機溶劑可溶性polyamides (PA, Code: VIIa~h)與poly(amide-imide)s (PAI, Code: VIIIa~h and Xa,b)是由1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (I)與各種芳香族二羧酸(IIa~h)和芳香族二醯亞胺二羧酸(Va~h,VIa,b),以triphenyl phosphate / pyridine為活化劑之直接聚縮合法合成,其中I是由hydroquinone與2-chloro-5-nitrobenzotrifluoride經由親核置換反應成二硝化物後用聯胺/Pd/C還原而成。V與VI是由胺基酸或芳香族二胺與trimellitic anhydride縮合而成。聚合物之固有黏度PA介於1.00~1.70 dL/g而PAI在 0.79~1.34 dL/g之間,所有的聚合物皆具有良好之溶解性,在 amide型之極性溶劑如N-methyl-2-pyrrolidone、N,N-dimethylacetamide、N,N-dimethylformamid等溶劑有10 % w/V以上之溶解性而易鑄膜。不論PA與PAI 其薄膜皆具有良好的機械性質,包括抗張強度在91~133 MPa之間,伸長率在8~40 %,起始模數在2.1~2.8 GPa之間。熱性質部分PA VII系列之Tg點在254~276 oC,PAI VIII與X在255~292 oC之間。10 % 重量損失PA 在氮氣中為477~509 oC,PAI為498~533 oC,PAI不論在氮氣或空氣中皆比PA高很多。由DMAc所鑄得的薄膜PA屬無色物其λ0值均在400 nm 以下,尤其VIIh之b*值可達1.2。PAI雖呈淡黃色,但VIII系之b*值在36~51間,比其同分異構體IX系之b*值 58~73,約降低Δb* 20之多。第二部分中,一系列新型含氟有機溶劑可溶性之聚醯胺醯亞胺醯亞胺(PAII, Code: VIIa-j)是由ODPA (4,4-oxydiphthalic anhydride)、TMA (trimellitic anhydride)與 BAFPB (1,4-bis(4-amino-2-trifluoromethylphenoxy) benzene)以1:2:2之mole比在NMP先縮合成含imide之二羧酸(IV’),然後IV’與各種芳香族二胺(VI’a-j)以TPP/Py為縮合劑直接聚縮合成,其固有黏度在0.72-0.96 dL/g左右。此系列PAII (VII’a-j)具有甚佳之有機溶劑可溶性,可溶於amide型極性溶劑NMP、DMAc等之中,有些甚至可溶於極性較低之溶劑如m-cresol及pyridine之中,其溶解性相較於BAFPB-TMA PAI有大幅的改善。由溶劑鑄成之薄膜具有99-125 MPa之斷裂點抗張強度,12-19 %之伸長率及1.6-2.4 GPa之起始模數,部份則有明顯的降伏點出現。熱性質方面,玻璃轉移溫度(Tg)介於236-276 oC之間,在空氣及氮氣中之10 %重量損失溫度分別介於499-544 oC及504-559 oC之間,800 oC下氮氣中之焦炭殘留率皆在54 %以上。

     Part I, A CF3-containing diamine, 1,4-bis(4-amino-2-trifluoromethylphenoxy) benzene (I), was prepared from hydroquinone and 2-chloro-5-nitrobenzotrifluoride. And the imide-containing diacids (Va~h and VIa,b) were prepared by condensation reaction of amino acids, aromatic diamines and trimellitic anhydride. Then, a series of soluble fluorinated polyamides (PA, Code: VIIa~h) and poly(amide-imide)s (PAI, Code: VIIIa~h and Xa,b) were synthesized from the diamine I with various aromatic diacids (IIa~h) and the imide-containing diacids (Va~hand VIa,b) via direct polycondensation with triphenyl phosphate and pyridine. The polyamides (PA) and polyamide-imides (PAI) had inherent viscosities of 1.00-1.70 dL/g and 0.79-1.34 dL/g, respectively. All synthesized polymers showed excellent solubility in amide-type solvents such as N-methyl-2-pyrrolidinone, N, N-dimethylacetamide and N-dimethylforamide and afford transparent and tough films by solvent casting. Polymers films VIIa~h, VIIIa~h, Xa,b had tensile strengths of 91-113 MPa, elongations to break of 8-40 %, and initial moduli of 2.1-2.8 GPa. The glass transition temperature of PAs and PAIs were in the range of 254-276 oC and 255-292 oC, respectively, and the imide-containing PAIs had better thermal stability than PAs. PAs showed higher transparency and were much lighter in color than PAIs, and their cutoff wavenumber (λ0) were below 400 nm. In comparison with the isomeric IXc-h, the PAIs (VIIIc-h) exhibited less coloring and showed a lower b* (yellowness index) values than the corresponding IX series. Part II, A new tetraimide-dicarboxylic acid (IV’) was synthesized starting from ring-opening addition of 4,4-oxydiphthalic anhydride (ODPA), trimellitic anhydride (TMA), and 1,4-bis(4-amino-2-trifluoromethylphenoxy) benzene (BAFPB) at a 1: 2: 2 molar ratio in N-methyl-2-pyrrolidone (NMP). A series of fluoride, organosoluble poly(amide-imide-imide)s (PAII; code VII’a-j ) with inherent viscosities of 0.72-0.96 dL/g were prepared by triphenyl phosphite-activated polycondensation from the tetraimide-diacid with various aromatic diamines. All of the polymers were readily soluble in a variety of organic solvents such as NMP, N,N-dimethyl acetamide (DMAc) and even in less polar m-cresol and pyridine. These polymers afforded tough, transparent, and flexible films, which had tensile strengths ranging from 99 to 125 MPa, elongations at break from 12 to 19 %, and initial moduli from 1.6 to 2.4 GPa. The glass transition temperatures of polymers recorded at 236-276 oC. They had 10 % weight loss temperatures in the range of 504-559 oC in nitrogen and 499-544 oC in air, respectively, and left more than 54 % residue even at 800 oC in nitrogen, indicating excellent thermal stability.

    總目錄 頁數 中文摘要 I 英文摘要 III 致謝 V 總目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 聚醯亞胺的發展 2 1.3 聚醯亞胺的優點及應用 5 1.4 研究方向 8 第二章 理論 11 2.1 聚醯胺-醯亞胺的合成 11 2-2 聚醯胺-醯亞胺的改質 16 第三章 實驗部分 18 3.1 藥品來源 18 3.2 單體之合成 19 3.2.1.1 1,4-Bis(4-amino-2-trifluoromethylphenoxy) benzene (BAFPB) (I) 之合成 19 3.2.1.2 二醯亞胺二羧酸V之合成 20 3.2.2.1 TMA- BAFPB -ODPA-四醯亞胺二羧酸(IV’)之合成 21 3.3 聚合物之合成 22 3.3.1.1 聚醯胺VII之合成 22 3.3.1.2 聚醯胺醯亞胺VIII、X與IX之合成 23 3.3.2.1 聚醯胺醯亞胺醯亞胺VII’之合成 23 3.4 高分子薄膜之製備 25 3.4 儀器及測試方法 25 第四章 結果與討論 27 4.1 1,4-雙(4-胺基-2-三氟甲基苯氧)苯、芳香族二羧酸及 各種芳香族二醯亞胺二羧酸合成含氟聚醯胺與 聚醯胺醯亞胺與其性質 27 4.2 1,4-雙(4-胺基-2-三氟甲基苯氧)苯、苯偏三酸酐 與ODPA合成之四醯亞胺二羧酸與各種芳香族 二胺合成之含氟聚醯胺醯亞胺與其性質 47 第五章 結論 64 參考文獻 66 自述 70

    [1] H. H. Wang, Chin. J. Mater. Sci., 31, 57(1999).
    [2] 松本正一,角田市良合著,劉瑞祥譯,液晶之基礎與應用,國立編譯館 (1996).
    [3] 楊金平,新型高性能共聚聚醯胺-醯亞胺之合成與性質,工程科技通訊,15卷,30~31 (1996).
    [4] W. M.,I. M. Robinson, British Pat.570858 U.S. Pat. 2710853 (1955).
    [5] 丁孟賢,何天白編著,聚醯亞胺新型材料,科學出版社 (1998).
    [6] T. T. Serafini, P. Delvigs and W. B. Alston, PMR-15 polyimidesreview and update. NASA TM-82821,Washington D.C. (1982).
    [7] T. T. Serafini, P. Delvigs and G. R. Lightsey, Thermally stable polyimides from solutions of monomeric reaction, NASA, Technical Note D-6611(1972).
    [8] M .I. Bessonov, M. M. Koton and L. A. Laius, Polyimides-thermally stable polymers, Consultants Bureau, New York (1987).
    [9] M.Grundschober,British Pat. 1190719 (1978).
    [10] W. F. Gresham and M. A. Naylor,U.S. Pat. 2,731,447 (1956).
    [11] 顏慶山,全芳香族聚醯亞胺的加工與應用,高分子工業,77 卷,73~79 (1987).
    [12] 李政義,國立成功大學化工研究所碩士論文,含羥基可溶性聚醯亞胺之合成及性質研究 (2000).
    [13] 江選雅,聚醯亞胺的合成及其在LCD 上的應用,化工資訊,13卷,7 期,43~53 (1999).
    [14] H. Sawada and M. Fujita, New developments in polybenzhdrolimide resin:Application in the filed of heat resistant coating, Daicel Chemical Industries, 109 (1988).
    [15] M. A. Sandhu, D. J. Savage, and T. W. Martin, Sci. Eng., 23, 159 (1979).
    [16] G. S. Papava, G. B. Borisov, S.Vurbanov and V. V. Korshak, Polymer, 39, 419 (1988).
    [17] L. A. Beridze, G. S. Papava, P. D. Tsiskarishvili, Izv. Akad. And Nauk. Gruz., Ser. Khim. 2, 227 (1976).
    [18] D. J. Liaw, B. Y. Liaw and C. Y. Chung, Macromol. Chem. Phys. 200, 1023 (1999).
    [19] Frey HE (to Standard Oil Co.), U.S. Pat. 3300420, 1967.
    [20] Hitachi Chem. Co., Fr. Pat. 1473600, 1967.
    [21] J. Sambeth (to Soc. Rhodiaceta), Fr. Pat. 1498015, 1967.
    [22] M. Kakimoto, R. Akiyama, Y. S. Negi, Y. Imai. J. Poym. Sci., Polym. Chem. Ed., 26, 99 (1988).
    [23] Y. Imai, N. N. Maldar, M. Kakimoto, J. Polym. Sci., Polym. Chem. Ed., 23, 2077 (1985).
    [24] J. F. Dezern, J. Polym. Sci., Part A: Polym. Chem., 26, 2157 (1988).
    [25] G. M. Bower, L. W. Frost, J. Polym. Sci., Part A-1, 1, 3135 (1963).
    [26] C. P. Yang, R. S. Chen, K. H. Chen and Y. P. Chen, J. Chin. Chem. Soc., 49, 927 (2002)
    [27] C. P. Yang, S. H. Hsiao, J. H. Lin, J. Polym. Sci., Part A: Polym. Chem., 30, 1865 (1992).
    [28] S. H. Hsiao, C. P. Yang, J. Polym. Sci., Part A: Polym. Chem., 28, 2169 (1990).
    [29] C. P. Yang, H. S. Hsiao, J. H. Lin, J. Polym. Sc.i, Part A: Polym. Chem., 29, 1175 (1991).
    [30] C. P. Yang, S. H. Hsiao and J. H. Lin, Makromol. Chem., 193, 1299 (1992).
    [31] C. P. Yang and W. T. Chen, J. Polym. Sci., Part A: Polym. Chem., 32, 435 (1994).
    [32] K. Takashi, S. Atsushi and T. Shoji (Mitsui Chemical Industry Co.).Jpn Kokai Tokkyo Koho 297,067,2000;Chem Abstr 2000,133:322563h
    [33] C. P. Yang, Y. P. Chen and E. M. Woo, Polymer, 45, 5279 (2004).
    [34] A. Jonquieres and A. Vicherat, J. Polym. Sci. Part A: Polym. Chem., 37, 2872 (1999).
    [35] C. P. Yang and S. H. Hsiao, Polym. Journal, 30, 723 (1998).
    [36] C. P. Yang and C. H. Yang, J. Polym. Sci. Part A: Polym. Chem.,39, 2591 (2001).
    [37] C. P. Yang and C. S. Wei, Polymer, 42, 1837 (2001).
    [38] D. J. Liaw and P. N. Hsu, J. Polym. Sci. Part A: Polym. Chem., 39, 3498 (2001).
    [39] N. Yamazaki and F. Higashi, Polym. Sci., 18, 1 (1981).
    [40] F. Higashi and S. Ogata, J. Polym. Sci., Polym. Chem. Ed., 20, 2081 (1982).
    [41] F. Higashi, and N. Akiyama, J. Polym. Sci., Polym. Chem. Ed., 13, 1373 (1975).
    [42] N. Yamazaki and M. Matsumoto, J. Polym. Sci., l3, 1373 (1975).
    [43] F. Higashi and A.Hoshio, J. Polym. Sci., Polym. Chem. Ed., 21,3241 (1983)
    [44] K. Kanayama, Y. Onuma, H. Iwan, Jpn. Kokai Tokkyo Koho JP 03,101,644 (1991)
    [45] C. P Yang, and R. S. Chen, J. Polym. Sci., Part A: Polym. Chem., 38, 2082 (2000)
    [46] Hsiao, S. H.; Yang, C. P.; Lin, C. K. J. Polym. Res., 2, 1 (1995).
    [47] K. Xie, S. Y. Shang, J. G. Liu, M. H. He, S. Y. Yang, J. Polym. Sci. Part A: Polym. Chem., 39, 2581 (2001).
    [48] C. P. Yang, S. H. Hsiao and J. H. Lin, Makromol. Chem., 193, 1299 (1992).
    [49] C. P. Yang and W. T. Chen, J. Polym. Sci., Part A: Polym. Chem., 32, 435 (1994).
    [50] C. P Yang and S. H. Hsiao, J. Apply. Polym. Sci., 30, 2883 (1985).

    下載圖示 校內:立即公開
    校外:2005-07-06公開
    QR CODE