簡易檢索 / 詳目顯示

研究生: 曾俊超
Tzeng, Jiun-Chau
論文名稱: 卡氏直角坐標與大地坐標轉換法之研究
A Study of Transformation Methods of Geocentric to Geodetic Coordinates
指導教授: 尤瑞哲
You, Rey-jer
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 42
中文關鍵詞: 地心地固卡氏直角坐標衛星定位測量坐標轉換大地坐標
外文關鍵詞: geocentric coordinates, GPS, geodetic coordinates, coordinate transformation
相關次數: 點閱:69下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著衛星定位測量的日漸普及,坐標系統轉換需求亦日漸變多,在空間點位量測系統中,常常會遇到需要將卡氏直角坐標轉換為大地坐標的情形。同時,為了能夠應付數量龐大的點位計算,一個有效率且不失精度的演算法尤其重要。目前一般的轉換演算法必須透過線性化,或是透過四階演算方程式,或以迭代方式解算才行。本論文嘗試將各種不同的坐標轉換方法,涵蓋1970年至最近2006年的文獻所提出的經典方法或是其改良作法全部加以分析實作,並且比較各種方法產生之結果。實驗結果顯示,各種方法的精度差距不小,並且某些方法在處理不同的緯度和高程時,其迭代次數也有所不同。
    另外,本研究並加入一個將現存方法改良後的演算法,將之套入著名的Bowring演算法中。經過實驗證明,此改良之方法在精度上有顯著的提升,為一個較佳的轉換方法。

    With the growing popularity of surveying by GPS, the demand of coordinate transformation increases gradually. The transformation from geocentric to geodetic coordinates, known as coordinate conversion, is often needed for some applications in geodetic work. In order to deal with the coordinate conversion problem of a plenty of points, an efficient and accurate algorithm is necessary. The current available algorithms to solve the conversion problem are either the iterative methods by a linearization procedure, or the closed methods by an algebraic equation of forth degree. In this study, five algorithms proposed from 1970 to 2000 for the coordinate conversion are implemented and compared for numerical efficiency. According to the analysis of our numerical results, we may conclude that accuracy of results and iterative times of different algorithms vary with geodetic heights and latitudes.
    In this paper, we also introduce a new parametric angle as an initial value into the famous Bowring formula. A more accurate result can be achieved by this new parametric angle than by the original parametric angle proposed by Bowring.

    中文摘要..................................................I 英文摘要.................................................II 致謝....................................................III 目錄.....................................................IV 表目錄...................................................VI 圖目錄..................................................VII 第一章 緒論..............................................1 1.1 前言..............................................1 1.2 文獻回顧..........................................2 1.3 研究方法..........................................3 1.4 論文架構..........................................4 第二章 常用的地心卡氏直角坐標與大地作標轉換方法..........5 2.1 常用坐標系統......................................5 2.1.1 大地坐標系統................................5 2.1.2 卡氏直角坐標系統............................7 2.2 大地坐標系統與卡氏直角坐標系統的轉換..............8 2.3 Borkowski:嚴密解法...............................9 2.4 Heiskanen的解法..................................13 2.5 Bowring的解法....................................14 2.6 Seemkooei的解法..................................17 第三章 以共焦距橢球坐標進行轉換.........................19 3.1 共焦距橢球的定義.................................19 3.2 共焦距橢球與卡氏直角坐標之關係...................21 3.2.1 零階解.....................................21 3.2.2 一階解.....................................25 3.3 改良的Bowring演算法..............................26 第四章 實驗成果分析.....................................28 4.1 實驗數據與流程...................................28 4.2 Borkowski的演算法................................29 4.3 Bowring的演算法..................................31 4.4 Heiskanen與Seemkooei的演算法.....................33 4.5 改良的Bowring演算法..............................34 4.5.1 零階解.....................................34 4.5.2 一階解.....................................36 4.6綜合評估..........................................38 第五章 結論與建議.......................................40 參考文獻.................................................41

    尤瑞哲 (2003)。 測量坐標系統。國立成功大學測量及空間資訊學系,台南。
    Benning, W. (1987). “Iterative ellipsoidische Lotfusspunktberechnung, ” AVN, 7/1987, 256-260.
    Borkowski, K.M. (1987) . “Transformation Of Geocentric To Geodetic Coordinates Without Approximations.” Astrophysics and Space Science, 139:1–4.
    Bowring, B.R. (1975). “Transformation From Spatial To Geographic Coordinates.” Survey Review, XXIII, 181, 323-327..
    Heck, B. (1987). Rechenverfahren und Auswertemodelle der Landesvermessung. Wichmann Verlag, Karlsruhe, Germany.
    Hedgley, D.R. (1976). “An Exact Transformation From Geocentric To Geodetic Coordinates For Nonzero Altitudes. ” NASA Techn. Rep, R-458.
    Heikkinen, M. (1982). “Geschlossene Formeln zur Berechnung raeumlicher geodaetischer Koordinaten aus rechtwinkligen Koordinaten.” ZfV, 5/1982, 207-211.
    Heiskanen, W.A., H. Moritz. (1967). Physical Geodesy. Freeman and Co., San Francisco.
    Jones, G.C. (2002). ”New Solutions For The Geodetic Coordinates Transformation. ” Journal Of Geodesy, 76, 437-446
    Korn, G.A., Korn, T.M. (1961). Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York.
    Lapaine, M. (1990). “A New Direct Solution Of The Transformation Problem Of Cartesian Into Ellipsoidal Coordinates. ” Determination Of The Geoid: Present and Future, R. H. Rapp and F. Sanso, eds., Springer, New York, 395-404.
    Rapp, R.H. (1982) Geometric Geodesy Vol. 1. The Ohio State University, Columbus.
    Ozone, M.I. (1985). “Non-Iterative Solution Of The ϕ Equation. ” Surveying And Mapping, 45, 169-171.
    Pollard J. (2005). “A New Approach To The Iterative Calculation Of Geodetic Latitude And Its Application. ” Survey Review, XXXVIII, 296, 117-123.
    Seemkooei A.A. (2002). “Comparison Of Different Algorithms To Transform Geocentric To Geodetic Coordinates.” Survey Review, XXXVI, 286, 627-632.
    Torge, W. (1978). Geodesy. Walter de Gruyter, Berlin.
    Vaníček, P., Krakiwsky, E.J. (1982). Geodesy: The Concepts, North Holland Publ. Co., Amsterdam
    Vermeille, H. (2002). “Direct Transformation From Geocentric Coordinates To Geodetic Coordinates. ” Journal Of Geodesy, 76, 451-454.
    Vincenty, T. (1978). “Vergleich zweier Verfahren zur Berechnung der geodaetischen Breite und Hoehe aus rechwinkligen Koordinaten.” AVN, 7/1978, 269-270.
    Vincenty, T. (1980). “Zur raeumlich-ellipsoidischen Koordinaten Transformation.” ZfV, 11/1980, 519-521.
    You, R.J. (2000). “Transformation Of Cartesian To Geodetic Coordinates Without Iterations.” Journal of Surveying Engineering, 126:1-7.

    下載圖示 校內:立即公開
    校外:2008-08-19公開
    QR CODE